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ABSTRACT
Designing tasks clearly to facilitate accurate task completion is a
challenging endeavor for requesters on crowdsourcing platforms.
Prior research shows that inexperienced requesters fail to write
clear and complete task descriptions which directly leads to low
quality submissions from workers. By complementing existing
works that have aimed to address this challenge, in this paper
we study whether clarity flaws in task descriptions can be iden-
tified automatically using natural language processing methods.
We identify and synthesize seven clarity flaws in task descriptions
that are grounded in relevant literature. We build both BERT-based
and feature-based binary classifiers, in order to study the extent to
which clarity flaws in task descriptions can be computationally as-
sessed, and understand textual properties of descriptions that affect
task clarity. Through a crowdsourced study, we collect annotations
of clarity flaws in 1332 real task descriptions. Using this dataset,
we evaluate several configurations of the classifiers. Our results
indicate that nearly all the clarity flaws in task descriptions can be
assessed reasonably by the classifiers. We found that the content,
style, and readability of tasks descriptions are particularly impor-
tant in shaping their clarity. This work has important implications
on the design of tools to help requesters in improving task clarity
on crowdsourcing platforms. Flaw-specific properties can provide
for valuable guidance in improving task descriptions.
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1 INTRODUCTION
Crowdsourcing is growing extensively and has been greatly bene-
ficial to organizations and individuals alike [33]. Crowdsourcing
marketplaces facilitate on-demand access to diverse human input,
having led to a vast family of cost-effective solutions and services.
This flourishing paradigm provides the potential to harness the wis-
dom, abilities, and creativity of a crowd for problems that require
human intelligence. The general crowdsourcing process includes
three main phases [50]: (1) Task design, where requesters post task
descriptions on a crowdsourcing platform. (2) Task operation, where
workers accept tasks and then submit their results. Workers may
ask questions about task details, and requesters may give feedback
on the results. And (3) task evaluation, where requesters decide to
accept results and to pay workers.

The majority of prior research on crowdsorucing has focused
on the quality of results provided by crowd workers [41]. Low-
quality solutions are considered as the major barrier to achieve
the full potential of crowdsourcing [57]. This problem emerges
from challenges pertaining to the three main stakeholders involved:
(1) workers may be unqualified, inexperienced, or unmotivated to
complete tasks effectively [16, 31, 36, 52, 58]; (2) requestersmay also
be inexperienced, unfair, or sometimes careless in task design, task
operation, and task evaluation [11, 36, 50, 58]; and (3) the platform
may mediate the entire crowdsourcing process poorly, especially in
terms of facilitating requester-worker communication [50]. Among
several factors that have been shown to shape the quality of crowd
work, unclear task design has been highlighted as one of the most
critical [27, 41, 43, 48, 58]. Poor task design can lead to disappoint-
ment and frustration among workers due to a misalignment of
expectations and unwarranted rejection of work [25, 40]. As argued
by prior work, this can harm the relationship between requesters
and workers, destabilizing the dynamics of crowd work in the long
run [20, 21, 49].

The creation of clear task descriptions is therefore crucial for
an effective task design. Usually, such a description consists of a

https://doi.org/10.1145/3465336.3475109
https://doi.org/10.1145/3465336.3475109


Do a google search 

Do a google search to make sure site 
is indexed

2D versus 3D Image Histograms Survey 

We are evaluating a 3D image histogram to 
see if it helps undergrad students to 
understand what a digital image processing 
histogram is visualizing. You qualify if you are 
a STEM undergraduate student, and you are 
at least 18 and at most 20 years old.

Are these two pictures of the 
same kind of place?

View two images and determine 
whether they are the same kind 
of place (such as bathroom, 
forest or street). Type the name 
of the left picture 

Overall clarity: Clear (5 out of 5)

Fully clear: Wording, important terms, 
  desired solution, acceptance criteria
Rather clear: Solution format, steps, 
  resources

Overall clarity: Unclear (2 out of 5)

Rather clear: Desired solution, steps,
  resources, acceptance criteria 
Partly unclear: Solution format

Overall clarity: Unclear (1 out of 5)

Rather clear: Solution format

Rather unclear: Wording, resources

(c)(a) (b)

Fully unclear: Wording, important terms

Partly unclear: Important terms, desired solution

Fully unclear: Steps, acceptance criteria

Figure 1: Example crowdsourcing task descriptions from the dataset introduced in Section 5. The labels below the descriptions
capture how annotators assessed the different dimensions that we propose tomodel the clarity of task descriptions on average.

title along with a body containing instructions. In general, a task
description should be easy to understand and follow, and should
describe sufficiently what is expected to be done by workers and
how this should be done [9, 22, 24, 29, 40, 47]. The description imme-
diately impact workers’ perception and selection of a task [46, 54],
with consequences for their participation [38] and task comple-
tion rate [15], as well as for their approval rate, reputation, and
income [55] despite spending time and efforts [48]. All of this affects
both the expected quality of results and the workers’ trust and satis-
faction [22, 58]. Accordingly, Khanna et al. [38] presented evidence
that task clarity through the descriptions improve the usability of
crowdsourcing, especially when hiring low-income workers.

Consequently, achieving task clarity is of great importance to
crowdsourcing processes. Yet, prior research on crowdsourcing em-
phasizes that ambiguous task descriptions have been a constant
challenge [13, 23, 27, 28, 38, 50, 58]. On one hand, requesters are
required to adequately describe all information necessary for com-
pleting a given task, including the resources to use, the steps to
be followed, and the solution format to submit. This is often dif-
ficult without extensive crowdsourcing experience, especially for
micro-tasks that are meant to appeal to a broad range of workers,
spanning diverse cultures, possessing different skills, and varying
educational backgrounds [35]. On the other hand, writing down
task descriptions in a clear and understandable way is challenging,
due to both the subjectivity of language used by task requesters
and the inherent ambiguity of natural language in general. Thus,
workers may interpret the instructions and requirements they read
differently [24]. Consider the simple task description in Fig. 1(a), for
example. Even if we expect that the “site” referred to is given, what
solution is required to “make sure” that the site is indexed may be
unclear to workers, let alone what the technical term “indexed” ex-
actly means. The notably longer task description in Fig. 1(b) shows
similar clarity flaws, and it even leaves the overall task goal fully
unclear (i.e., what needs to be achieved for acceptance and how
this can be achieved). In contrast, the task description in Fig. 1(c),
though certainly not perfect, clearly states what is to be done and
how, using easy language without any complex terms.

We argue that the dual problem of describing all necessary infor-
mation in unambiguous phrasing calls for technological assistance

of requesters that helps them maximize the clarity of their task
descriptions while obtaining the level of completeness required.
Task requesters could greatly benefit from interactive tools that
automatically assist them in improving the quality of descriptions.
To our knowledge, however, such tools have not been built due to
a lack of usable computational methods that can assess the clarity
of task descriptions.

In this paper, we aim to investigate the extent to which the clarity
of a crowdsourcing task description can be assessed by leveraging
natural language processing methods. Concretely, we address the
following research questions:

• RQ1. How effectively can the most common clarity flaws in
task descriptions be identified automatically?

• RQ2.What textual properties render a task description un-
clear with respect to the defined flaws?

To contribute to the state of the art in task design support (Sec-
tion 2), we define a set of common task clarity flaws, covering
difficult wording, missing definition of terms, specifications of the
desired solution, the solution format, the steps to perform, and the
required resources, as well as the criteria to meet for task accep-
tance (Section 3). We hypothesize all of them to negatively affect
overall clarity, i.e., to lead to unclear task descriptions. For com-
putational task clarity assessment (RQ1), we develop two natural
language processing approaches (Section 4): a transformed-based
neural model, BERT [18] and a linear SVM with six feature types
covering both standard content and style aspects as well as clarity
flaw-specific indicators. The latter particularly helps to explore
the impact of textual properties in light of RQ2. Since no data for
studying task clarity exists yet, we extended 1332 real micro-task
descriptions from an existing dataset [19, 27] for clarity flaws in
a crowd-based annotation task (Section 5). Each description was
assessed for all flaws and overall unclarity by five workers on a
scale from 1 to 5. Our correlation analysis suggests that all flaws
can affect clarity, while none of them is decisive alone.

Given the dataset, we experiment with BERT as well as one SVM
with each feature type alone, feature ablation (all but one), and all
features for binarity clarity flaw and overall unclarity classification
(Section 6). With respect to RQ1, BERT models perform with test



set accuracy ranging from 0.55 to 0.71 while SVMs outperform both
with accuracy ranging from 0.61 to 0.74 for all cases except the
undefined important term flaw. Both approaches show learning
success in almost all cases but difficult wording flaw which seems
hard to assess, possibly due to imbalanced data distributions. With
respect to RQ2, we observe that the content (reflected by TF-IDF
features), style and readability seem important, but also explicitly
checking for flaw-specific indicators helps in many cases. In con-
trast, the length of task descriptions seems to have little effect on
their clarity.

Altogether, the main contributions of this paper are:1

• A dataset with 1332 real task descriptions, manually anno-
tated for studying task clarity in crowdsourcing.

• A feature-based and a neural approach for computational
assessment of task clarity.

• Extensive empirical insights into what helps in computa-
tional assessment of task clarity and to what extent.

2 RELATEDWORK
Research on text clarity in general has investigated understand-
ability and readability with respect to the syntax and semantics
of text [39], vocabulary that causes semantic difficulties [12], the
use of statistical language models for assessment [17], and more.
Kevyn [37] summarized a wide range of works on analyzing the
readability of text. Here, we position our work with respect to
related literature that has explored task clarity in crowdsourcing
marketplaces, in terms of (1) workflows, (2) methods or models,
and (3) tools. We discuss task clarity further in Section 3.

2.1 Workflows
Salehi et al. [53] proposed a workflow for complicated writing
tasks where workers first post their questions regarding the task
to the requester. After discussing the questions with the requester,
workers write a draft. Then, the requester rates the drafts and
discusses them with the workers. The workers, in turn, edit the
paragraphs based on the ratings and discussion and submit the
final paragraph. This workflow is expensive in terms of time and
money. Moreover, it highly relies on the workers’ communication
and relation to the requester as well as on awell-structured feedback
mechanism which seems to be challenging to achieve. Similarly,
Manam et al. introduced TaskMate, a workflow that depends on the
workers to improve the clarity of task descriptions. TaskMate offers
a collaborative setting in which workers identify the ambiguities
of a task description in the form of questions and suggest several
answers for each question, other workers vote for the answers that
most probably clarify the ambiguities, and a clearer task description
is then created to be done by the workers [47]. This approach
reduces the effort for requesters to create clear instructions. It puts
all the responsibility on workers, assuming that they collaborate
well together. Its impact thus depends on how reliable the workers
are in terms of collaboration and general work quality.

Gaikwad et al. [28] defines a workflow called Daemo which
offers requesters to post several instances of their task, receive
feedback from workers, on which basis they can optimize their task
description. Experiments indicate that this method is effective in
1The Data and experiment code are available here: https://osf.io/m8njv/

principle. Despite the cost in terms of time and money for this pilot
step, however, the approach may not be suitable for large crowds
with diverse backgrounds and skills, due to its reliance on the
subjective judgements of a limited number of workers submitting
their feedback.

In contrast, the computational approach we present in this pa-
per proposes an automated tool that offers a faster and cheaper
workflow on the requester’s side, since it fully removes the work-
ers from the process. The intended workflow is independent from
various challenges discussed in previous work [50], ranging from
low-quality results submitted by workers, complications of poor
requester-worker relationship, and the lack of a proper feedback
system in the process. If helpful, it may still be followed by work-
flows or interventions that include the workers’ opinions.

2.2 Models and Methods
A number of researchers have proposed models of what task clar-
ity means as well as methods to analyze task clarity. Among these,
Gadiraju et al. [27] proposed a computational model, which stresses
predictive features such as role clarity and goal clarity as the major
aspects of task clarity in crowdsourcing. Additionally, the authors
presented a means to quantify clarity. Wu and Quinn [58] mea-
sured the effect of guidelines on workers’ perception of task quality
and, consequently, on the outcome of the task including accuracy,
throughput, trust, and worker satisfaction. Papoutsaki et al. [51]
studied inexperienced requesters in a data collection task; how they
design a task, what dimensions they consider, and similar. Their
analysis contains helpful lessons for novice requesters. Khanna
et al. [38] showed that the user interface, task instructions, and the
workers’ cultural background prevent workers with low digital abil-
ities from accepting and doing tasks on Mturk. They recommend
to simplify the user interface and task instructions, along with lan-
guage localization to harness the usability of workers. Finnerty
et al. [22] provided evidence that clear instructions and a simpler
task design which encourages the workers’ focus and awareness
leads to higher quality results.

To build computational methods, we extended the clarity aspects
discussed by Gadiraju et al. [27]. Accordingly, we annotated the
dataset they used in their work in order to investigate the assessibil-
ity of descriptions’ clarity flaws by only processing the plain text of
the descriptions. We believe that the trained classifiers we present
below will advance the development of assistance tools that are not
only helpful for inexperienced requesters to improve the clarity of
their task descriptions, but also for workers to better understand
tasks and, hence, to deliver more accurate results.

2.3 Tools
Manam and Quinn [48] introduced WingIt, a system that relies on
the workers’ assumptions and intuitions about the task require-
ments as well as the requesters’ desired result in the case of am-
biguous task instructions. WingIt enables workers to either ask
the requester for clarifications in the form of questions (“Q&A”)
with the best answer that clarifies the ambiguity, or directly revise
the instructions (“Edit”). The worker either waits for requester’s
response within three minutes (synchronous) or submits the result
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assuming the requester confirms the answer (asynchronous). An-
other approach is implemented in the SPROUT system [11] which
organizes confusing questions and utilizes suggestions from crowd
workers to edit ambiguous parts of task instructions. It provides
requesters with the questions and allows them to prioritize the
set of questions. These tools can potentially involve inexperienced
workers and require additional time from workers and costs from
requesters. Yet, the risks of misunderstandings and wrong percep-
tions of workers remain, which may consequently lead to rejection
and a bad reputation.

Kulkarni et al. [44] introduced a system called Turkomatic which
works based on a price-divide-solve algorithm. Via step-by-step
guidance, it utilizes the crowd to decompose and solve complex
tasks provided by requesters. Turkomatic requires knowledgeable
workers, supervision from the requesters, and a close feedback
mechanism to be successful. With a similar idea, Chang et al. [14]
proposed a collaborative system called Revolt which focuses on
image-labeling tasks with vague or incomplete instructions. In Re-
volt, multiple workers are allowed to label the task with the given
steps and have access to the description written by other workers. In
case of a conflict, workers relabel the image according to other work-
ers’ descriptions. Also, the system Fantasic [30] tests a task design to
help novice requesters. It collects task requirements from requesters
to then create and show a task description before posting on the
platform, but this is limited to a narrow set of task types. Other
systems include Soylent, a plug-in for Microsoft Word through
which with the help of workers documents are edited, shortened,
and proofread by hiding the complexity of task specification [10],
as well as CrowdForge [42], and Crowd4u [34]. The two latter help
to decompose complex tasks written in natural language into small
tasks for crowdsourcing platforms, but they lack generalizability
to all types of task specifications in crowdsourcing. TurKit, finally,
helps requesters with iterative task deployment on MTurk [46].
Its architecture avoids receiving redundant submissions by saving
intermediate results. TurKit makes the assumption that the way
tasks are broken down will be determined by requesters in all cases.

In contrast, we develop natural language processing methods to
automatically detect clarity flaws in task descriptions independent
of workers’ involvement and the necessity of their communica-
tion with requesters. In future, these automatic methods may be
deployed to develop a tool by which requesters can identify and
improve their task description’s clarity weaknesses before its pub-
lication on the platform. By avoiding worker interaction in the
process, it is not only more efficient in terms of time and cost,
but it may also increase effectiveness, because it is not affected
by the various challenges arising out of workers’ and platforms’
involvement along with the complications that workers face with
requesters in the process [50]. This may particularly help inexperi-
enced requesters to learn what information is necessary for creating
complete and unambiguous task descriptions.

3 ASSESSMENT OF TASK CLARITY
In this section, we present task description clarity assessment, the
task tackled in this paper. First, we briefly discuss the notion of task
description clarity in crowdsourcing. How can we design textual
descriptions that contain all information relevant to complete a

crowdsourcing task successfully, while being easy to understand for
diverse crowd workers? Next, based on a synthesis of related litera-
ture we identify flaws with respect to task clarity and characterize
unclear task descriptions.

3.1 Clarity of Task Descriptions
With task clarity we refer to a twofold property of crowdsourcing
task descriptions, which not only influences the level of compre-
hensibility and completeness of the instructions written in natural
language, but also determines the extent to which information re-
quired for delivering a high-quality result to the task is provided
by its requester. In addition to determining participation criteria
and laying down eligibility constraints for crowdsourcing tasks (in
terms of reputation, experience, demographic variables, language
proficiency, and similar), task clarity is primarily shaped by the task
design of requesters in crowdsourcing marketplaces.

In particular, problems with task clarity may occur due to the
inexperience of task requesters, who may lack an understanding of
the diversity among target workers in terms of their background
knowledge, skills, demographics, and culture. Similarly, they may
lack sufficient awareness of the importance of a thorough task
design and its direct influence on the quality of the submissions
from workers. Unclear task descriptions can lead to inaccurate or
incorrect responses from workers, which can in turn lead to task
rejection and distrust between requesters and workers.

Different researchers have addressed challenges pertaining to
task clarity, and studied dimensions that lead to instructions being
perceived as vague or incomplete. Among these, Gadiraju et al. [27]
discussed goal clarity and role clarity as main dimensions of micro-
task descriptions. These terms refer to what is expected to be de-
livered from workers and how the work is planned to be done,
respectively. Moreover, Wu and Quinn [58] introduced the notion
of descriptive metrics and prospective metrics of task descriptions.
For identifying the task clarity flaws, descriptive metrics are of
particular interest. They include (a) the vocabulary or language
used to describe the task, (b) the specification of the data that is
expected to be delivered by crowd workers, and (c) the order of
the steps that should be carried out in a task and the solution to
be submitted. Prospective metrics, on the other hand, refer to the
task properties which are more subjective relating to the workers’
personal feelings. Such metrics play a role when it comes to work-
ers’ trust, confidence, and prediction of outcomes rather than their
comprehension of the task, influenced directly by task descriptions
in general. 2

Finally, other information adhering to best practices for a com-
plete task instruction includes the interface on which the work
should be performed, the expected format of the solution, and the
specification of acceptance conditions [58].

3.2 Clarity Flaws: Characterizing Unclear
Tasks

Based on the prior studies (Section 3.1) on the characteristics of
incomplete and unclear tasks, we formed a set of clarity flaws that

2Occasional exceptions may occur for tasks where the concrete object of investigation
is specifically known to a worker. However, we are interested in the general form of a
description rather than its concrete object of investigation.



define the basis for annotation guidelines in our dataset creation
in Section 5, We here propose to model clarity by assessing the
following clarity flaws. The first one, description unclear, can be
understood as an overall unclarity assessment, while the remaining
reflect sub-dimensions of unclear task descriptions:

(1) Description unclear. The task is unclear, i.e., it is not fully
understandable how one can complete the task successfully
and/or what the desired solution is. This refers to overall
unclarity.

(2) Difficult wording. The words and the grammatical con-
structions used in the task descriptions are not fully compre-
hensible.

(3) Important terms undefined. Some terms that are poten-
tially important to properly understand the tasks are not
defined sufficiently. This refers to the vocabulary used for
the description [29].

(4) Desired solution unspecified. The solution that is actually
desired to be submitted in response to a task is not explained
in sufficient detail. This refers to the goal clarity property.

(5) Solution format unspecified. The format in which the
solution should be submitted is not specified sufficiently.
This refers to the required detailed information regarding
the goal clarity.

(6) Steps unspecified. The steps that need to be carried out one
after another to complete a task are not defined sufficiently.
This refers to the role clarity property.

(7) Resources unspecified. The resources that are required to
be used to complete the task are not sufficiently specified.
Resources may include data, tools, links, websites, etc. This
refers to the necessary data and links to perform the task.

(8) Acceptance criteria unspecified. The acceptance criteria
on which basis a requester decides about the acceptance of
a solution submitted to a task are not sufficiently specified.
This refers to the information which can help decide how
much time to spend for performing the task and how much
the work is rewarded [43].

4 COMPUTATIONAL APPROACHES TO THE
ASSESSMENT OF TASK CLARITY

The main goals of this paper are to study how well computational
methods can assess the aforementioned clarity flaws based only
on the plain text task descriptions, and what textual properties
of descriptions indicate the task clarity flaws. We investigate two
approaches for our objectives, a state-of-the-art neural model and
a traditional feature-based model. Both are motivated and detailed
in the following section.

4.1 Neural and Feature-based Clarity
Assessment: Estimating Possible
Effectiveness

In this paper, we employ two approaches to compare their effective-
ness for clarity assessment in order to address Research Question
RQ1 from Section 1: (a) we rely on transformer-based neural mod-
els which have been shown to be superior in a variety of natural
language processing tasks, (b) we use linear SVM classifiers based

on six feature types, since they are found to be effective if data is
limited.

For neural approach, we rely on thewidely used BERTmodel [18].
We explore two common variations of pre-trained BERT namely
Bert-base-uncased, a case-insensitive model trained on lower-cased
English text, and Bert-base-cased, a case-sensitive model trained on
English text in its original format. Both variations have 12 layers,
768 hidden nodes, 12 heads, and almost 110 million parameters [3].
For feature-based approach, we collected six specific feature types
based on which the classifiers assess the task clarity. In the follow-
ing, we introduce the feature types in details.

4.2 Feature-based Clarity Assessment:
Studying Textual Properties

Feature-based classification can provide detailed insights into the
textual properties that are helpful in assessing each clarity flaw,
allowing us to address RQ2. Concretely, our linear SVM classifiers
are based on the following six feature types. These types cover both,
standard features that have often been used in natural language
processing and clarity flaw-specific features that we engineered
based on the well-known aspects of task descriptions [27]:

(1) Content. Content is important in many text classification
tasks. Consistent with common practice, we examine the ef-
fect of content-related properties via term frequency–inverse
document frequency (TF-IDF) where we consider all lower-
cased token 1- to 3-grams including stop words as terms.

(2) Length. To test whether clarity correlates with length, we
include 26 features that reflect the extent of a task descrip-
tion. They cover the numbers of all characters, letters, digits,
punctuation marks, whitespaces, non-whitespaces, unique
words, words, fully upper-cased tokens, fully lower-cased to-
kens, capitalized words, phrases, and sentences. Additionally,
we computed the mean of all counts per sentence (except for
sentences).

(3) Style. Clarity may be considered a property of style. We
hence model style, namely via part-of-speech 1- to 3-grams
and phrase 1- to 3-grams (created using the NLTK library [1])
as well as characters 3-grams and the functional words. For
the latter, we consider the top-100 most frequent lower-cased
words in the whole corpus.

(4) Subjectivity. Subjective phrasing of task instructions have
been shown to affect perceived task clarity [27]. We capture
subjectivity using the Textblob library [8] which computes
a subjectivity score, a polarity score, a negativity score, a
positivity score, and an objectivity score for a given text.

(5) Readability. As mentioned in Section 2, readability metrics
have been used for clarity assessment. We consider Flesch-
Kincaid Grade Level, ARI, Coleman-Liau, Flesch Reading-
Ease, Gunning-Fog Index, LIX, SMOG Index, RIX, and Dale-
Chall Index. All readability metrics are computed via the
Pypi library [4].

(6) Flaw-specific. In line with the clarity flaws from Section 3,
we hypothesize that the clarity of task descriptions is re-
flected in the completeness, in terms of resources and accep-
tance criteria, as well as the complexity of words and terms.



Table 1: The distribution of crowdsourcing task descriptions over the six different task types in the original dataset [27], after
filtering out near-copies, and in the final 50% sample that we used for our annotated dataset.

# Task Type # Original # No Near-Copies # Our Dataset

SU Surveys 1200 1121 561
CA Content Access 1008 528 264
IA Interpretation and Analysis 1199 505 253
IF Information Finding 1200 291 144
CC Content Creation 1200 147 74
VV Verification and Validation 1200 71 36

Total 7007 2663 1332

To study completeness and complexity, we introduce the fol-
lowing eight task-specific features. The first four are binary
features capturing whether a description matches the given
regular expression.
a. Website. Regular expression for various token 1- or 2-gram

which may refer to a web resource (e.g., “web page(s)”,
“webpage(s)”, “site(s)”, “web site(s)”, etc.).

b. Link. Regular expression for URls and placeholder words
such as “link”.

c. Given time. Regular expression for token 1-grams deliver-
ing information regarding the estimated time to complete,
such as “5 minutes”, “1 minute 14 seconds”, “2 min”.

d. Reward. Regular expression for token 1-grams delivering
information regarding the specified reward (or bonus) for
a task, such as “up to $0.57 + 50% bonus = $0.85 max”, “5
cents”, “avg rwrd+bns: $2.02”

e. Entity. All token 𝑛-grams detected by Spacy [6] as loca-
tions, organizations, ordinal entities, products, or similar.

f. POS categories. Frequencies of conceptually similar part-
of-speech tags found with by the Stanford Tagger [7], such
as verbs, nouns, open and close part-of-speech tags, and
similar.

g. Discrete words. The 10 most frequent discrete lower-cased
1-gram tokens (excluding stop words) which appear either
only in clear task descriptions or only in unclear descrip-
tions in all dimensions.

h. Complex words. Two different scores for the complexity of
token 1-grams computed by Pypi [4] .

5 A DATASET FOR STUDYING THE
ASSESSMENT OF TASK CLARITY

To allow studying the clarity assessment of task descriptions, we
created and validated a new dataset in four main steps: (1) the com-
pilation of task descriptions, (2) the annotation of the descriptions
for clarity flaws, (3) the consolidation of the final dataset, and (4) a
basic correlation analysis of the clarity flaws. In the following, we
detail each step, describing the source data and annotation process
as well as the resulting data distribution and correlations.

5.1 Compilation of Crowdsourcing Task
Descriptions

For our data compilation, we built on the previously published
dataset of Gadiraju et al. [27] and Difallah et al. [19], which consists
of a total of 7007 records of real task descriptions published on
Amazon Mechanical Turk (mTurk) from October 2013 to September
2014.3 For each task, the title, body, date of publication, and some
other metadata are given. For our study, the title text, a dot (as
separator), and the body of the tasks compose the task descriptions
in the dataset. The task descriptions are grouped into six different
task types, namely Surveys (SU), Content Access (CA), Interpretation
and Analysis (IA), Information Finding (IF), Content Creation (CC),
as well as Verification and Validation (VV) [26].

During inspection of the original dataset, we observed that the
7007 task descriptions contains a lot of cases that are near-copies
of others in terms of being multiple instances of the same task only
with specific information replaced. Since we did not expect any
clarity-specific differences in these, we filtered out all near-copies
in a semi-automatic process, ending up in 2663 clearly distinct task
descriptions. Due to the limited budget, we decided to select a 50%
sample for manual annotation (i.e., 1332 records). To preserve the
full diversity of task descriptions covered, we chose the sample
representative with respect to the task types in the filtered set.
Table 1 shows the distribution of the task types in our dataset in
comparison to the source data. The 1332 task descriptions span
31,027 tokens (23.3 tokens per description on average), and cover
25,891 unique tokens.

5.2 Crowd-based Annotation for Clarity Flaws
We decided to collect annotations for clarity flaws in the task de-
scriptions directly from crowd workers, since they are eventually
the ones to benefit from improved task descriptions, making their
judgment decisive. In accordance with the source of the given task
descriptions, we deployed the annotation tasks on Mturk, so that
our annotators match potential workers for the described tasks in
principle.

Task Design. Being task requesters ourselves in this setting, we
took care to avoid the clarity flaws identified in Section 3 in our

3We are aware that the age of the data may impact what we observe. However, we
decided to favor comparability to previous work over timeliness, also because we
do not see a fundamental change in task descriptions after 2014. Besides, note that
obtaining task descriptions is all but straightforward.



Table 2: (a) Distribution of the MACE aggregate Likert scores [32] over all 1332 task descriptions in our dataset for each clarity
flaw (the higher the score, the more the flaw was observed by the annotators). (b) The corresponding binary scores, where 1
and 2 are mapped to Negative for without flaws, and 3, 4, and 5 to Positive for with flaws. The majority values are marked in
bold.

(a) 5-point Likert Scores (b) Binary classes

# Clarity Flaws 1 2 3 4 5 Negative Positive

1 Descriptions unclear (overall unclarity) 0.48 0.18 0.09 0.20 0.05 0.66 0.34
2 Difficult wording 0.42 0.26 0.05 0.03 0.24 0.68 0.32
3 Important terms not defined 0.31 0.28 0.07 0.10 0.24 0.59 0.41
4 Desired solutions not specified 0.24 0.29 0.16 0.22 0.09 0.53 0.47
5 Solution format not specified 0.32 0.27 0.18 0.07 0.16 0.59 0.41
6 Steps not specified 0.15 0.35 0.24 0.09 0.16 0.50 0.50
7 Resources not specified 0.18 0.32 0.25 0.13 0.12 0.50 0.50
8 Acceptance criteria not specified 0.27 0.21 0.27 0.13 0.12 0.48 0.52

task design. In our annotation task, the workers had to assess a
given task description from our dataset for the clarity flaws via a
survey-like form. In the beginning, general instructions were given
on how to fill the form (along with a privacy guarantee), asking the
workers to put themselves into the role of the worker who takes
on the task corresponding to the description. Then, each flaw was
described following the definitions from Section 3.

To determine a suitable setting in terms of the annotation scheme
to use and the number of annotators to employ, we designed and
deployed the annotation tasks in two phases: first, a pilot annotation
study where we explored initial design decisions on Mturk to test
whether our tasks lead to the desired results with sufficient quality;
and second, the main annotation study where we collected the
annotations of all 1332 task descriptions after improving the task
design based on the findings from the pilot study.

Pilot Annotation Study. We compared two different annotation
schemes in terms of which one leads to a higher inter-annotator
agreement: (a) binary classification where workers either agreed
or disagreed with statements covering each clarity flaw; and (b) 5-
point Likert scoring where workers reported the extent to which
they agreed with the statements from “1: strongly disagree” to
“5: strongly agree”. We then carried out a pilot study with two
batches of 12 annotation tasks (one for binary, one for Likert).
Each annotation task included four task descriptions, meaning
48 descriptions in total. In addition to the flaw assessments, the
workers were asked to give a summary of the task description,
which we used as a quality check to see whether they carefully read
the task descriptions while deciding on the labels. We estimated 8
minutes to complete each task and paid USD 1.32 per task to each
worker. Each task was to be annotated by three workers with more
than 1000 approved tasks (HITs) on mTurk, as suggested by mTurk
to ensure the quality of annotators based on their reputation.

Our analysis of the results of the pilot study revealed that the
5-point Likert scale gave workers more freedom to make more accu-
rate judgement, while leading to higher inter-annotator agreement;
for the annotated flaws, we observed full agreement ranging from
40% to 63% for the binary scheme, and from 50% to 75% for 5-point
likert scoring after discarding unreliable workers. Moreover, the

summaries written by the workers illustrated the necessity to select
workers more restrictively to increase reliability.

Main Annotation Study. We decided to acquire only so called
master workers with an approval rate higher than 95% who are Eng-
lish speakers from the US, Canada, England, Ireland, Australia, New
Zealand, or India.4 Each task was tackled by five annotators, spend-
ing about 5 minutes on average with an hourly wage of around
10 USD per task. We refined the quality check by replacing the
summary text field with two text fields for other problems that the
workers potentially find with the description (an optional field) and
a brief suggestion for improving the task descriptions (a mandatory
field).5 Finally, we deployed all 1332 task descriptions in 333 anno-
tation tasks, each of which included four task descriptions to be
annotated. Although, there was no limits on the number of tasks
an individual worker could complete, the annotation tasks were
done after 10 days and 33 unique workers participated in the study.

5.3 Consolidation of the Dataset
The distribution of the collected annotations for the clarity flaw
Description unclear turned out to be unexpectedly skewed toward
“strongly disagree”. We found three workers who had participated
in annotating more than 150 task descriptions and had selected
strongly disagree for all the statements of more than 95% of the task
descriptions. To improve data quality, we discarded all assignments
of these workers, still remaining with at least three annotations for
all task descriptions. To obtain a single final annotation from the re-
maining annotations of each tasks, we relied on themulti-annotator
competence estimation (MACE) [32]. MACE was designed particu-
larly for crowdsourcing settings, where standard inter-annotator
reliability measures such as Fleiss’ 𝜅 and Krippendorff’s 𝛼 do not
apply due to varying annotator sets. It grades the reliability of
workers based on their agreement with others and allows deriving

4The title master worker is given to workers by a blackbox algorithms of the mTurk
platform based on the workers’ performance.
5For the study at hand, we used these texts only evaluate the reliability of workers, but
an analysis of the problems and suggestions given by the workers may be interesting
in future work.



Description
unclear

Difficult
wording

Terms
undefined

Solution
unspeficied

Format
unspecified

Steps
unspecified
Resources

unspecified
Criteria

unspecified

Description
unclear

Difficult
wording

Terms
undefined

Solution
unspecified

Format
unspecified

Steps
unspecified

Resources
unspecified

Criteria
unspecified

1.00

0.59

0.58

0.49

0.57

0.53

0.52

0.54

0.59

1.00

0.75

0.53

0.60

0.52

0.53

0.55

0.58

0.75

1.00

0.58

0.57

0.54

0.53

0.56

0.49

0.53

0.58

1.00

0.65

0.59

0.58

0.65

0.57

0.60

0.57

0.65

1.00

0.70

0.61

0.70

0.53

0.52

0.54

0.59

0.70

1.00

0.68

0.64

0.52

0.53

0.53

0.58

0.61

0.68

1.00

0.61

0.54

0.55

0.56

0.65

0.70

0.64

0.61

1.00

Figure 2: Pearson’s 𝑟 correlation coefficient for each pair of the annotated clarity flaws in our dataset. Themedium correlations
suggest that all specific flaws add to some extent to overall unclarity (Description unclear), but none of them decides it alone.

one aggregate annotation for each instance on this basis.6 The com-
petence value of the annotators ranged from 0.01 to 0.97. While
the average was only 0.13, the top five all had a confidence above
0.32. In addition to the resulting MACE Likert scores from 1 to 5,
we also established binary class for each task description, where
we consider “strongly agree” (5) and “rather agree” (4) as Positive,
and “partly agree/partly disagree” (3), and lower as Negative.

Table 2 shows the distribution of scores in the consolidated
dataset for each clarity flaw from Section 3. We observe that the
distribution is slightly skewed towards lower scores in general, but
that the whole scale is covered reasonably in most cases. Particu-
larly, the binary classes are reasonably balanced. For development
and evaluation, we split the dataset based on the tasks’ publication
date on mTurk, in order to simulate the idea of unseen future tasks
in testing. The training set contains 666 task descriptions (50%) with
15,128 tokens, the validation set contains 333 descriptions (25%)
with 7,821 tokens, and the test set also contains 333 descriptions
(25%) here with 8,078 tokens.

5.4 Correlation Analysis
Given the final Likert scores, we carried out a correlation analysis
for all clarity flaws, in order to roughly assess whether they can be
distinguished and how well they predict that a description is un-
clear (overall unclarity). Figure 2 shows the Pearson’s 𝑟 correlation
coefficient for each pair of flaws. Only few flaws correlate strongly
with each other, the highest coefficient being observed for Difficult
wording and Important terms undefined (0.75), which makes sense.
Also, it seems intuitive that the flaw Solution format unspecified
often goes hand in hand with Steps unspecified and Acceptance cri-
teria unspecified (both 0.70). The majority of correlations is rather
medium, roughly between 0.5 and 0.6. An important observation
is that none of the seven specific clarity flaws is highly correlated
with Description unclear, suggesting that all of them may some-
what add to overall unclarity. An uneasy wording seems to have

6For comparison, we also explored the use of majority voting instead, using the rounded
mean Likert scores, in case no majority exists. However, we decided for MACE, since
it not only accounts for annotator reliability, but also the distribution of scores turned
out to be notably more balanced.

a rather high impact (0.59), whereas a missing specification of the
desired solution seems a little less important (0.49)—as far as single
correlation coefficients allows such an inference.

6 EXPERIMENTS ON THE COMPUTATIONAL
ASSESSMENT OF TASK CLARITY

We now present the empirical experiments that we carried out on
the dataset from Section 5 with our approach from Section 4 in
order to study the extent to which the clarity flaws in task descrip-
tions from Section 3 can be assessed computationally. Concretely,
we compare BERT models and feature-based SVMs in the binary
classification of clarity flaws and overall unclarity. We investigate
what degree of effectiveness can be expected for the computational
assessment of task clarity in light of Research Question RQ1 from
Section 1, and we explore what textual properties of descriptions
are useful to identify task unclarity computationally (RQ2).

6.1 Experimental Setup
We evaluated the following configurations of the given approaches
and two baselines in our experiments:

Transformer-based Models. We study how effectively the task
clarity flaws can be assessed using eight BERT-based binary classi-
fiers, one for overall unclarity and seven for the other clarity flaws.
In each case, we used the pre-trained Bert-base-cased and Bert-
base-uncased models, and we employed the PyTorch library [5] to
conduct the experiments on the BERT-based classification. We first
preprocessed the texts of the task descriptions using BertTokenizer
for both pre-trained models. Then, we converted the preprocessed
texts to the required data type for each model, respectively. We
adapted BertForSequenceClassification to the binary-label setup and
used the BertAdam optimizer to fine-tune the parameters with
learning rate of 2−5 and a warmup of 0.1. Using the training set,
we tuned the models for four epochs and computed the test set
accuracy for the Bert-base-cased and Bert-base-uncased classifiers
separately.



Table 3: Accuracy of each feature type, feature ablation, all features, and the two BERT variants in comparison to the majority
baseline and the minority “baseline” for overall unclarity (Description unclear) and for the seven clarity flaws. The best values
in each column are marked bold; the best feature and feature ablation are underlined. For all features, Bert-base-cased, and
Bert-base-uncased significant improvements over the majority baseline are marked with ** (𝑝 < .05) and * (𝑝 < .01).

Description Difficult Terms Solution Format Steps Resources Criteria
# Approach unclear wording undef. unspec. unspec. unspec. unspec. unspec.

𝐴1 Content 0.72 0.71 0.66 0.60 0.56 0.59 0.63 0.58
𝐴2 Length 0.62 0.63 0.54 0.57 0.51 0.55 0.54 0.56
𝐴3 Style 0.66 0.67 0.61 0.61 0.60 0.57 0.59 0.63
𝐴4 Subjectivity 0.71 0.51 0.63 0.50 0.49 0.52 0.53 0.55
𝐴5 Readability 0.69 0.70 0.65 0.63 0.57 0.55 0.62 0.58
𝐴6 Flaw-specific 0.69 0.71 0.64 0.55 0.59 0.57 0.61 0.60

𝐴\1 w/o Content 0.72 0.72 0.67 0.62 0.60 0.58 0.60 0.61
𝐴\2 w/o Length 0.74 0.72 0.66 0.59 0.62 0.62 0.63 0.58
𝐴\3 w/o Style 0.69 0.72 0.67 0.61 0.59 0.59 0.61 0.61
𝐴\4 w/o Subjectivity 0.73 0.72 0.67 0.61 0.62 0.58 0.61 0.62
𝐴\5 w/o Readability 0.74 0.70 0.67 0.60 0.62 0.60 0.62 0.60
𝐴\6 w/o Flaw-specific 0.72 0.70 0.67 0.63 0.58 0.57 0.56 0.60

𝐴1−6 All features 0.73 0.74 *0.66 *0.61 *0.59 *0.61 *0.61 *0.62

BbC Bert-based-cased 0.69 0.71 *0.69 *0.60 *0.60 *0.56 *0.56 *0.57
BbU Bert-based-uncased 0.71 0.71 *0.67 *0.62 *0.61 *0.58 *0.60 *0.55

Ma Majority baseline 0.72 0.75 0.31 0.38 0.36 0.43 0.41 0.44
Mi Minority “baseline” 0.28 0.25 0.69 0.62 0.64 0.57 0.59 0.56

Feature-based Models. Specifically to examine what textual prop-
erties of task descriptions are helpful for the computational assess-
ment of task clarity, we used binary SVMs with the six feature types
from Section 4.2. We used the scikit-learn library [2] to conduct
the experiment on feature-based classification. To account for the
imbalances in the data distribution, we randomly resampled the
training dataset for each classifier independently. Then, we trained
eight linear SVM classifiers, again one for overall clarity assessment
and seven for the other flaws. We did this once for each of the six
feature types alone, for each feature ablation (all but one feature
type), and for all features together. We optimized the cost hyperpa-
rameter of each classifier on the validation set (tested range: 2𝑖 for
−10 < 𝑖 < 10). Finally, we computed the test set accuracy score of
each best validation set configuration on the test set.

Baselines. We compare the approaches simply to amajority base-
line, which always predicts the majority training class. Thereby, we
make visible where actual learning success is achieved. For some
test sets, the majority class is different from training. To make visi-
ble where we can definitely distinguish classes, we also show the
“minority” baseline (predicting the minority training class) below,
but we point out that this is not a reasonable baseline in practice.

Significance Tests. We performed a one-tailed independent 𝑡-
test to study whether (a) Bert-base-cased, (b) Bert-base-uncased,
and (c) the SVM with all features can assess the task clarity flaws
significantly better than the majority baseline at 𝑝 < .05 (marked **)
and 𝑝 < .01 (*).

6.2 Results on the Effectiveness of the
Assessment of Task Clarity (RQ1)

Table 3 shows all test set accuracy results for overall unclarity
(Description unclear) and the seven clarity flaws in task descriptions,
both for the BERT models and for the SVM classifiers with single
feature types (𝐴𝑖 ), feature ablation (𝐴\𝑖 ), and all features (𝐴1−6). We
first analyze the overall results in light of the first research question,
RQ1.

We evaluate the test set accuracy of the BERT models against the
majority baseline to find out whether the considered task descrip-
tions’ clarity flaws seem possible to be identified computationally.
We see that Bert-base-cased and Bert-base-uncased succeed in as-
sessing six flaws: unspecified important terms (0.69/0.67 vs. 0.31),
desired solutions (0.60/0.62 vs. 0.38), solution format (0.60/0.61 vs.
0.36), steps to perform (0.56/0.58 vs. 0.43), resources (0.56/0.60 vs.
0.41), and acceptance criteria (0.57/0.55 vs. 0.44), while they fail to
improve over the majority baselines overall unclarity (0.69/0.71 vs.
0.72) and difficult wording (0.71/0.71 vs. 0.75). Moreover, the hypo-
thetical approach of predicting the minority class would lead com-
petitive results for some flaws. Comparing the two BERT variants,
we observe that the case-insensitive variant (Bert-base-uncased)
performs slightly better, showing higher results in five cases. This
suggests that our choice to lower-case all words for the features
was appropriate.

Given that the training data is not huge, the feature-based clas-
sifiers apparently benefit from their focused analysis; they reach
higher test set accuracy compared to both BERT models for several



cases: unspecified desired solution (𝐴5 and 𝐴\6 with 0.63 vs. Bert-
base-uncased with0.62), solution format (𝐴\2, 𝐴\4, and 𝐴\5 0.62 vs.
0.61), steps (𝐴\2 0.62 vs. 0.58), resources (𝐴1 and 𝐴\2 0.63 vs. 0.60),
and acceptance criteria (𝐴3 0.63 vs. 0.57). For overall unclarity, the
SVMs 𝐴\2 and 𝐴\5 perform best with 0.74 and show learning suc-
cess over the majority baseline in classifying the task descriptions.
Particularly the classifier without the length feature (𝐴\2) seems
strong in general (more on the features below).

Finally, the results suggest that the clarity of having a difficult
wording seems hard to assess; none of our approaches managed to
beat the majority baseline (0.75). A reason may lie in the diversity
of potentially difficulty words, which makes it hard to learn such
words. However, the majority baseline result also shows that this
clarify flaw shows a rather high distribution imbalance.

6.3 Results on the Impact of the Textual
Properties of Task Descriptions on Task
Clarity (RQ2)

The individual feature type results in the upper part of Table 3 (𝐴𝑖 )
suggest that many of the considered textual properties are relevant
to at least some of the clarity flaws. The content of task descriptions
(measured in the form of TF-IDF) seems particularly important,
achieving notably higher results than the other feature types for a
number of clarity flaws, including for overall unclarity (0.72). The
style of the descriptions performs best on unspecified acceptance
criteria (0.63), possibly because of specific part-of-speech tags, and
it is also an important indicator for an unspecified solution format
in descriptions (0.60). Likewise, the readability of task descriptions
helps best to identify unspecified desired solutions (0.63), whereas
the flaw-specific features and the subjectivity of descriptions play
an important role mostly in an ablation setting in the center part
of Table 3 (𝐴\𝑖 ).

The insightful exception among the feature types is the Length
(in terms of number of words, characters, digits), which achieves
comparably low accuracy for all consider clarity flaws of task de-
scriptions. This is also underlined by the feature ablation, showing
that the best results overall are achieved when the length feature is
left out. This finding suggests that the clarity of crowdsourcing task
descriptions does not depend on their length—which is in contrast
to related assessment tasks, such as predicting Wikipedia article
quality [45] or argument quality [56].

7 CONCLUSIONS AND FUTUREWORK
The creation of a clear task description in terms of completeness and
comprehensibility is a challenging responsibility in crowdsourcing,
particularly for inexperienced requesters. Unclear or flawed task
instructions can negatively impact the quality of the workers’ sub-
missions, which in turns hampers the workers’ rewards and their
reputation. We argue that natural language processing techniques
can rise to this challenge and aid in identifying clarity flaws in task
descriptions.

This paper aims to study the extent to which common clarity
flaws in task descriptions can be identified automatically by lever-
aging natural language processing methods (RQ1), and we have
investigated the textual properties of task descriptions which in-
dicate task clarity flaws (RQ2). To this end, we have identified

seven clarity flaws from relevant literature, all of which affect a
task’s overall unclarity (i.e., the extent to which a task description
is unclear). Due to the lack of availability of a useful dataset for
studying task clarity assessment, we have extended an existing
dataset with flaw annotations on this basis. To this end, we have
recruited crowdworkers to annotate the defined clarity flaws in
1332 real task descriptions.

Given the dataset, we have addressed RQ1 by evaluating the
effectiveness of two types of computational approaches for clarity
flaw assessment: transformer-based models (using BERT) as well as
linear SVMs with feature types including standard content and style
features as well as flaw-specific aspects. For RQ2, we carried out
an individual features analysis using the SVMs, providing insights
into the impact of the textual properties of descriptions on the
assessment of clarity flaws. Regarding RQ1, we found that the
accuracy of the BERT models ranges from 0.55 to 0.71. The SVMs
outperformed the BERT, with results between 0.61 to 0.74 for most
clarity flaws. Both approaches show learning success in almost all
cases, except for identifying a difficult wording. Regarding RQ2,
we observed that the content, style, and readability of descriptions
seem to be particularly important textual properties for clarity.
Combinations of the task flaw-specific properties with others are
also advantageous for clarity assessment. In contrast, the length of
descriptions was not found to be helpful in identifying the clarity
flaws.

In the imminent future, we plan to deploy the developed methods
in a tool which can help requesters to increase the clarity of their
task descriptions before deploying tasks on a given crowdsourcing
platform. This may eventually lead to better quality results from
workers and consequently their higher reputation and satisfaction.
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