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ABSTRACT
While existing literature has explored and revealed several insights
pertaining to the role of human factors (e.g., prior experience, do-
main knowledge) and attributes of AI systems (e.g., accuracy, trust-
worthiness), there is a limited understanding around how the im-
portant task characteristics of complexity and uncertainty shape
human decision-making and human-AI team performance. In this
work, we aim to address this research and empirical gap by system-
atically exploring how task complexity and uncertainty influence
human-AI decision-making. Task complexity refers to the load of
information associated with a task, while task uncertainty refers
to the level of unpredictability associated with the outcome of a
task. We conducted a between-subjects user study (𝑁 = 258) in
the context of a trip-planning task to investigate the impact of task
complexity and uncertainty on human trust and reliance on AI
systems. Our results revealed that task complexity and uncertainty
have a significant impact on user reliance on AI systems. When
presented with complex and uncertain tasks, users tended to rely
more on AI systems while demonstrating lower levels of appropriate
reliance compared to tasks that were less complex and uncertain.
In contrast, we found that user trust in the AI systems was not in-
fluenced by task complexity and uncertainty. Our findings can help
inform the future design of empirical studies exploring human-AI
decision-making. Insights from this work can inform the design
of AI systems and interventions that are better aligned with the
challenges posed by complex and uncertain tasks. Finally, the lens
of diagnostic versus prognostic tasks can inspire the operational-
ization of uncertainty in human-AI decision-making studies.
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1 INTRODUCTION AND BACKGROUND
With the emergence of human-AI decision-making as a promi-
nent paradigm across various domains, numerous investigations
have been dedicated to understanding the factors that can impact
trust and reliance on AI systems [84, 138, 142]. Such factors can
be broadly classified into three primary categories: human-related
factors [35, 95, 96], attributes of the AI systems [94, 98], and charac-
teristics of the decision-making tasks [16, 56, 126]. Human factors
such as prior experience [110, 119], cognitive biases [85, 102], and
AI literacy [25], which can shape individuals’ perceptions and inter-
actions with AI systems. Attributes of the AI system include aspects
such as predictions generated by AI [66, 76, 99], information about
model predictions [11, 31, 93], as well as interventions that impact
cognitive processes [17]. Furthermore, the level of trust and reliance
on AI may differ across various domains and applications due to
the attributes associated with decision tasks [42, 127].

The characteristics of tasks have been demonstrated to play a
pivotal role in determining the level of reliance on AI systems,
emphasizing the importance of methodically recognizing and com-
prehending these features in human-AI decision-making context.
However, limited task characteristics have been systematically ex-
plored and their impact on human reliance on AI systems is not yet
fully understood [68, 109]. Although a few studies have included
multiple tasks with varying attributes [6, 14, 131], a systematic and
empirical understanding of task features is notably absent from ex-
isting literature [68, 109]. Additionally, it remains unclear whether
task attributes chosen in existing empirical studies have been ap-
propriately considered, in a manner that is commensurate with the
claims of the studies [42, 68, 75]. These limitations have the poten-
tial to undermine the credibility and generalizability of research
findings, hindering our progress in developing effective strategies
for human-AI decision-making [68, 109].

In this work, we propose empirically examining task complex-
ity and task uncertainty as two essential objective task char-
acteristics that are manipulable from the task’s standpoint. Task
complexity pertains to the characteristics of a task that contribute
to an increased load of information [133], and it is distinct from
task difficulty [100], which relates to an individual’s perception of
the task-based on their capabilities and previous experience [133].
It has been shown that task complexity is a crucial factor in de-
termining both human performance and behaviour [3, 23, 83], as
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well as the success of human-AI teams [9]. Additionally, prior work
has demonstrated that individuals tend to rely more heavily on
AI systems when confronted with more complex tasks [28] due
to the challenges associated with analyzing large volumes of in-
formation [23]. In line with work by Parkes [100], Vasconcelos
et al. [126], we operationalize task complexity as an objective task-
related characteristic that can be measured based on the number
of constraints involved in the task. On the other hand, the level of
task uncertainty refers to the extent of unpredictability inherent
in a given task [29]. We operationalize uncertainty in our study
using diagnostic and prognostic tasks to capture different levels
of uncertainty. Diagnostic tasks involve situations where partici-
pants are provided with detailed and comprehensive information
about the task, (theoretically) enabling them to make accurate deci-
sions. Prognostic tasks, on the other hand, involve situations where
participants must make predictions about future events based on
incomplete or limited information. By operationalizing uncertainty
in this manner, we can effectively capture the diverse levels of
uncertainty that arise from the inherent nature of a task and its
connection to information availability. Intuitively, in prognostic
tasks, users can benefit from using AI systems due to their ability to
reduce uncertainties, particularly when choosing the optimal route
for a future trip by considering anticipated weather and traffic con-
ditions. Unlike planning immediate trips, this task entails a greater
degree of uncertainty owing to future events’ unpredictability.

Prior work has highlighted that appropriate trust and reliance
play a critical role in achieving complementary human-AI team
performance [58, 90, 139, 141]. Thus, it is essential to comprehend
how task-related factors impact human trust and reliance on AI
systems, as separate constructs [63, 90, 111], to foster successful
collaboration between humans and AI. We thereby address the
following research questions:

RQ1: How does task complexity influence user trust and
reliance on an AI system?

RQ2: How does task uncertainty, characterized by prognos-
tic versus diagnostic tasks, influence user trust and reliance
on an AI system?

RQ3: How does task complexity interact with task uncer-
tainty to shape user trust and reliance on an AI system?

To address these research questions, we selected the real-world
scenario of trip-planning where both task complexity and uncer-
tainty are prominent factors. In such scenarios, individuals are
confronted with circumstances that necessitate a choice between
relying on an imperfect AI system or exercising their own judg-
ment. We conducted a 3 (task complexity) × 2 (task uncertainty)
between-subjects study with 258 participants recruited from the
Prolific crowdsourcing platform.

We found that users’ reliance on the AI system varied depending
on the level of complexity and uncertainty in the task. Individuals
facing tasks characterized by medium complexity and uncertainty
i.e., prognostic tended to rely excessively on the AI system. How-
ever, their ability to differentiate accurate AI advice frommisleading
advice was compromised, leading to a relatively low appropriate

reliance, a higher over-reliance on AI, and subsequently lower over-
all task performance. However, we observed a point of transition
where participants started to increase their appropriate reliance on
the AI system. This led to enhanced overall performance in prognos-
tic tasks with high complexity, revealing a significant interaction
between complexity and uncertainty.

2 RELATEDWORK
2.1 Human-AI Collaborative Decision-Making
In recent years, the use of AI technologies has evolved to encompass
more collaborative approaches that involve both humans and AI
systems working together [5, 21, 22, 73, 129]. While fully automated
decision-making by AI systems may not always be appropriate,
certain tasks still require human judgment. For example, in high-
stake scenarios such as in the medical [39, 61, 67, 97], legal [6,
81, 86, 131], and financial [27, 36, 43, 45, 46] domains, individuals
tend to exhibit a preference for human decision-makers over AI
systems. This preference could be motivated by ethical and legal
concerns [68, 74, 104], as well as a desire for individual agency and
accountability [54, 70, 81, 117]. Additionally, it may also stem from
the limited trust [18, 19] surrounding AI systems, coupled with
concerns about potential biases or errors in algorithms [77, 120],
particularly when human lives or ethical considerations are at stake
due to possible failures of AI systems [68, 74, 104].

The primary objective of integrating human and AI is to unite
their respective strengths, resulting in enhanced decision outcomes
through complementary capabilities [17, 51]. To this end, previ-
ous research has focused on identifying the factors that influence
human-AI decision-making. Recent studies have explored variables
that contribute to the fairness [31, 76, 124, 130] and trustworthi-
ness [34, 48, 80, 139] of AI systems, as well as the impact of assigning
different decision-making roles to humans and AI on the reliance
on such systems [52, 103, 122, 144]. Prior work has also been dedi-
cated to developing and evaluating interfaces [15, 30, 87, 89] and
visualizations [43, 49, 134, 137, 140] aimed at improving human-AI
collaboration.

2.2 Trust and Reliance on AI Systems
It is important to distinguish between trust and reliance, as they
have different implications for the context of human-AI decision-
making. Lee and See [71] proposed the following definition of trust,
which we adopt for the scope of our work:

Trust is an attitude that an agent will achieve an indi-
vidual’s goal in a situation characterized by uncertainty
and vulnerability.

Reliance, on the other hand, refers to the extent to which individu-
als rely on AI systems [71, 128]. When user decisions differ from
AI advice, there are mainly three discernible patterns of reliance
behavior [7, 112, 115], (i) appropriate reliance, switching to the AI
advice when it is correct and overriding it when it is incorrect,
(ii) over-reliance, excessively relying on AI advice even when it
is incorrect, and (iii) under-reliance, not fully utilizing AI advice
even when it is correct. While trust is an essential factor in deter-
mining the level of reliance on AI systems [55, 63, 71, 111], it is not
always a guarantee. Prior studies have shown that individuals may
not necessarily increase their reliance on AI systems even if they
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trust them [62, 63, 90]. Instead, they might rely more on their own
judgments despite acknowledging the capabilities of the AI system.
This highlights that the trusting behavior of users can differ from
their trusting beliefs. The evaluation of the system’s trustworthiness
by individuals to establish perceived trustworthiness significantly
influences (subjective) trust and trusting behaviour (i.e., objective
reliance) [113]. Even if a system is trustworthy, it does not auto-
matically ensure accurate perceived trustworthiness [8, 113]. To
align the perceived trustworthiness of AI systems with their ac-
tual value, it is essential to consider aspects like the availability
and relevance of system information and the detection and utiliza-
tion of this information by human decision-makers [113]. Trust in
AI systems, namely perceived trustworthiness, can be evaluated
through different methodologies, including subjective self-reported
measures [26, 59, 63, 132] and relatively objective trust-related
behavioral measures [51, 128, 138, 142], such as agreement and
compliance.

Through a wide range of studies, researchers have consistently
found that reliance on AI systems is influenced by various factors
including human-related aspects [37, 51, 81, 101, 120], attributes
of the AI systems [43, 79, 106, 107], and characteristics of the
decision-making tasks [9, 12, 16, 46, 126]. Human factors encompass
a variety of individual characteristics, including previous experi-
ence [95, 110], cognitive biases [85, 102], and AI knowledge [25].
For instance, cognitive [35, 68, 96] or meta-cognitive biases [51]
have the potential to influence how individuals comprehend and
appraise the outcomes generated by AI systems which in turn can
affect their reliance on AI. In addition, the attributes of AI systems
can enhance decision-making outcomes [68], which include as-
pects such as predictions generated by AI [66, 76, 99], information
about AI predictions or AI systems themselves [13, 70, 118, 136],
and interventions that impact cognitive processes [65, 99, 105].
For instance, various explanation methods have been explored to
enhance the interpretability and transparency of AI algorithms, al-
lowing humans to better understand AI advice [2, 50, 66]. Banovic
et al. [8] discovered that reliance on AI systems is negatively af-
fected when untrustworthy AI systems overstate their capabilities
compared to trustworthy ones. This is primarily because users
struggle to differentiate between the competence of trustworthy
and untrustworthy AI systems, leading to deception and excessive
reliance on the untrustworthy system. Moreover, the character-
istics of the decision-making tasks can also significantly impact
human reliance on AI systems [68, 109]. Hence, the level of re-
liance may differ across various domains and applications due to
the attributes associated with decision-making tasks [42, 127]. For
instance, in high-stake fields like healthcare or finance, individuals
may exhibit distinct behaviours compared to low-stake areas such
as entertainment [89, 136].

Recent research has revealed several challenges in fostering
appropriate reliance on AI systems. Prior work has shown that
depending on different factors [126, 143], users may blindly follow
AI advice, leading to over-reliance [17], or underestimate the ca-
pabilities of AI, resulting in under-reliance [37, 131]. To overcome
such challenges and improve performance-related outcomes, it is
important to ensure that users can strike a balance between utiliz-
ing AI effectively while also considering the limitations of a given
AI system. To this end, researchers and practitioners have explored

the use of explanation methods [66, 94, 126], interventions such
as tutorials [25, 84] and cognitive forcing functions [17] to foster
appropriate reliance on AI systems with varying degrees of success.

Building on the body of literature, our study aims to enhance the
comprehension of appropriate reliance on AI systems in human-AI
decision-making by investigating how task complexity and uncer-
tainty influence user trust and reliance. To this end, we conducted
a between-subjects study in the context of trip-planning task. We
measured the extent to which individuals rely on AI systems for
decision-making in various conditions by leveraging a series of
common metrics in the field.

2.3 Task Characteristics in Human-AI
Decision-Making

Although much attention has been given to the effect of human
and AI-related factors in shaping human reliance on AI, few stud-
ies have explored the influence of task characteristics. Lee [75]
found that individuals exhibited lower trust in AI systems in tasks
that involve human skills, such as work evaluation, compared to
tasks that require more analytical skills. Additionally, Vasconce-
los et al. [126] has also examined the concept of task difficulty by
considering the cognitive load required. Their findings indicate
that as tasks become more difficult, there is a tendency among
users to rely excessively on AI advice, leading to over-reliance.
A few studies have also explored the effect of task features on
human-AI team performance. Bansal et al. [9] conducted a study
where participants had to assess whether objects passing through
a pipeline were defective or not. They manipulated the complexity
by changing the number of the task features, such as color, shape,
and size. They found that an excessive number of task features
diminished the performance of human-AI teams significantly. Simi-
larly, in a study by Poursabzi-Sangdeh et al. [105], participants were
presented with varying numbers of features to predict apartment
selling prices. The features included variables such as the number
of rooms, area size, days on the market, distance to amenities, and
building maintenance fees. They also found that participants strug-
gle to distinguish AI errors in tasks with more features, leading to
decreased performance. In contrast, Tolmeijer et al. [120] showed
that the complexity of tasks did not significantly impact human-AI
performance due to a learning effect. They conducted an exper-
iment in which participants were tasked with finding a suitable
house based on a set of constraints. The complexity of the tasks
was manipulated, with some scenarios having three constraints
(such as rent type, budget, and registration condition), while others
had five constraints (including rental duration and proximity to
amenities). Buçinca et al. [16] conducted a study examining the
influence of proxy tasks, where participants were tasked to antici-
pate AI advice, compared to actual tasks where participants directly
received AI advice. Their results indicate that participants’ behavior
in proxy tasks did not align with their behaviour in actual tasks,
underscoring the importance of carefully designing experiments to
draw valid conclusions. Additionally, high-stake [6, 45, 46, 97] tasks
and low-stake [44, 46, 66] tasks have been studied individually in
literature in relation to human reliance on AI systems.

Furthermore, there is a lack of comprehensive investigations
into categorizing task attributes and their specific implications for
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human-AI decision-making [109]. Lai et al. [68] proposed a frame-
work that categorizes task characteristics in terms of their domain,
required expertise, risk, and subjectivity. According to Lai et al.
[69], tasks can also be differentiated based on whether they are
emulating human intelligence, like object recognition [20], or based
on discovered patterns in data such as recidivism prediction [86].
Some prior works have also provided a taxonomy of task types
existing in the literature [1, 92]. However, these taxonomies often
focus on general task types rather than specifically addressing the
impact of these characteristics on human-AI decision-making. De-
Arteaga et al. [29] introduced diagnostic and prognostic tasks in
which there is clear grand-truth in diagnostic tasks, while prognos-
tic tasks involve making predictions about future outcomes. They
emphasized that the level of inherent uncertainty in predicting
future outcomes is a crucial factor that can impact human reliance
on AI systems. Inspired by this work, we operationalize task uncer-
tainty in our study using the distinction between diagnostic and
prognostic tasks.

In this paper, we aim to fill an empirical and research gap by
examining the impact of task complexity and uncertainty, as im-
portant attributes in decision-making in real-world contexts. By
providing application-grounded evaluation [32] with users relying
on an AI system for assistance in practical tasks, our work is the
first to explore task uncertainty and how task uncertainty interacts
with task complexity in shaping human-AI decision-making.

3 HYPOTHESES AND TASK DESIGN
3.1 Hypotheses
The degree of task complexity is deemed one of the primary indica-
tors for determining the success of Human-AI teams [3, 9, 23, 83].
Consequently, it can be anticipated that as tasks become more
complex, their influence on human reliance on AI systems in-
creases [23, 82, 105]. More complex tasks tend to require more
cognitive effort [23], making individuals more likely to rely on
AI systems for assistance. Moreover, as task complexity increases,
the verifiability [40] and plausibility [57, 60] of AI advice tend to
decrease. This can pose challenges for individuals in distinguishing
misleading AI suggestions, leading to reduced levels of appropriate
reliance on AI systems. Although there may not be a correlation
between trust and reliance on AI systems [63, 71, 90, 114], prior
work suggests a higher likelihood of individuals placing greater
trust in AI systems for more complex tasks [53, 71].

When faced with prognostic tasks, individuals are likely to per-
ceive them as more complex and unpredictable, thus increasing
their reliance on AI systems for assistance. With the presence of
uncertainty in a task, individuals may lack sufficient capability to
verify the correctness of AI advice and therefore rely more heavily
on the AI systems [29], leading to reduced appropriate reliance on
AI systems. Previous research has also demonstrated the influence
of uncertainty on trust formation in AI systems [121]. Considering
highly complex and prognostic tasks, we hypothesize that indi-
viduals exhibit higher levels of trust and reliance on AI systems
while showing a decrease in appropriate reliance. This could be
due to the high cost of engaging cognitively in complex decision-
making processes, leading to a greater reliance on AI systems for

guidance [126]. Therefore, we formulate our hypotheses as shown
in Table 1.

3.2 Trip-Planning Task
We chose trip-planning to as the scenario for our study due to
two primary reasons. Firstly, trip-planning is a common real-world
problem that individuals frequently encounter and seek assistance
from AI systems to make decisions. Secondly, this task allows us
to meaningfully manipulate complexity levels (e.g., the number of
constraints) and uncertainty levels in our experimental conditions,
thereby enhancing the ecological validity of our findings. In our
study, participants are presented with a practical scenario where
external assistance is potentially useful to successfully accomplish
the task. We utilized an imperfect AI system with a 66.7% accuracy
rate for trip-planning and manipulated its features accordingly (cf.
section 4.1). This setup with the necessary complexity creates the
desired sense of vulnerability and uncertainty, making it a suitable
situation for analyzing human trust and reliance on AI systems [58,
71]. Note that while trip planning is a frequently encountered real-
world task, the inclusion of time and budget limitations makes it
unique, affecting how individuals rely on AI assistance.

Figure 1: An overview of the trip-planning task interface that
participants used including five components: (1) task sce-
nario and description, (2) map, (3) route information, (4) gen-
eral information, and (5) two-stage decision-making. Note
that this screenshot is meant to convey a bird’s-eye view
of the interface. This interface is also dedicated to a highly
complex scenario encompassing all constraints and the prog-
nostic experimental condition with high uncertainty.

Planning a trip involves determining the most suitable route
for travel, taking into account factors such as time limitations and
budget constraints. Participants are tasked to select the trip that
minimizes both travel time and expenses. Each task typically con-
sists of multiple components that support participants in making
well-informed decisions, as depicted in a bird’s-eye view of the task
interface in Figure 1.

Quality Control: To ensure the accuracy and reliability of the
collected data in our study, we employed multiple methods. We
initially offered instructional materials on the interface and task-
related features, followed by a training session for participants that
included both theoretical instruction and hands-on practice. Sec-
ondly, we evaluated participants’ comprehension by administering
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Table 1: Summary of Our Hypotheses.

Hypothesis Description

H1a Users demonstrate a lower level of appropriate reliance on AI systems for complex tasks compared to relatively
less complex tasks.

H1b Users trust AI systems to a greater extent in complex tasks compared to relatively less complex tasks.
H2a Users demonstrate a lower level of appropriate reliance on AI systems in tasks with high levels of uncertainty

compared to tasks with low levels of uncertainty.
H2b Users trust AI systems to a greater extent in tasks with a high degree of uncertainty (prognostic) compared

to tasks with lower levels of uncertainty (diagnostic).
H3 Users demonstrate a relatively low level of appropriate reliance on AI systems in tasks with relatively high

complexity and uncertainty.

a quiz on task-related constraints. Individuals who scored below
a certain threshold were excluded from the study to maintain the
quality of data. Lastly, we incorporated four attention-check ques-
tions in the pre-questionnaire and post-questionnaire to screen out
individuals who may not be fully engaged or attentive through-
out the study. Detailed explanations of these methods are publicly
available on our companion page.1

3.3 Design Considerations and Setups: Task
Complexity vs. Task Uncertainty

Wood’s seminal work [133] proposed that task complexity consists
of three constructs: component, coordinative, and dynamic com-
plexities. Component complexity relates to the number of features
in a task, while coordinative complexity pertains to executing se-
quences or steps within the task. Dynamic complexity arises from
changing world states requiring further considerations at the point
of decision-making. We utilized component complexity to define
task complexity and also adjusted the uncertainty as incomplete
information in our setup. In dynamically complex tasks, decision-
making must adapt as the situation changes, with all information
accessible at each point. However, uncertain tasks involve incom-
plete information at the point of decision-making, setting them
apart from dynamically complex tasks. Therefore, it is valid to con-
sider these factors as separate dimensions although task uncertainty
can increase task complexity.

3.3.1 Task Complexity: To operationalize task complexity in
our experimental conditions, we manipulated the number of con-
straints that are given to participants. This approach has been
used in previous studies to control the level of complexity for a
given task [9, 105, 120]. We categorized the tasks into three lev-
els of complexity: low, medium, and high. In low-complexity tasks,
participants are presented with four features to consider while
in medium-complexity tasks, eight features are provided. High-
complexity tasks entail twelve different features that must be taken
into account. This design choice is guided by prior neuroscience
research by Miller [91], suggesting that human cognitive capac-
ity for processing information is limited to around seven (± two)
chunks of information at a time. Hence, we established five to nine
task features as representative of a medium level of complexity
based on this finding. Any number exceeding nine would classify

1https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c

as high complexity, while four or fewer would indicate low com-
plexity [109].

3.3.2 Task Uncertainty: Diagnostic tasks entail circumstances
where participants are given access to well-defined and compre-
hensive information about the current task, allowing them to make
precise judgments [29]. Prognostic tasks, on the other hand, in-
volve scenarios in which participants are presented with restricted
or unclear data and need to generate predictions regarding future
outcomes [29]. The necessity to anticipate uncertain results gives
rise to increased uncertainty throughout the process of making
decisions. To operationalize uncertainty in the contrasting exper-
imental conditions pertaining to diagnostic and prognostic tasks,
we employed various strategies.

For diagnostic tasks, participants are instructed to schedule a trip
for the present moment within the narrative, while for prognostic
tasks, participants are assigned to plan a trip that will take place
two weeks later. Next, we customized the way task attributes are
presented to align with the level of uncertainty. In situations involv-
ing diagnostic tasks, participants are given precise values for each
constraint, eliminating any potential ambiguity. On the other hand,
in prognostic tasks, a certain degree of uncertainty is introduced
by offering participants ranges or estimates instead of exact values
for each attribute. We also presented the probability of different
outcomes for certain constraints. For example, we highlighted the
high likelihood of encountering traffic congestion during the rush
hour or the low chance of experiencing rain during the scheduled
trip.

We created one task scenario for each task. In total, we generated
24 different scenarios, with four scenarios in each experimental
condition that differed in terms of task complexity and uncertainty.
The full list of these task scenarios and all code for our im-
plementation is publicly accessible for the benefit of the research
community and in the spirit of open science.1

3.3.3 Task Features: We designed task features to impart and
define constraints in the decision-making tasks such that they do
not affect each other and can be independently manipulated and
measured. We communicated this independence explicitly and im-
plicitly by ensuring that each feature is presented separately and
does not rely on or interact with other features. All task features
were inspired by considerations typical in real-world trip-planning
contexts. In our research, we can classify task characteristics from
two different viewpoints: each feature has the potential to influence

https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c
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either the overall duration of travel, the associated expenses, or
both factors. Furthermore, each feature can be categorized as being
either time-dependent or time-independent. Time-dependent fea-
tures, such as traffic conditions and weather patterns, are prone to
temporal changes based on external factors and their presentation
differs when considering diagnostic tasks versus prognostic tasks.
In tasks that have low complexity, we designed an equal distribu-
tion of time-dependent and time-independent features. However,
for tasks with medium or high complexity, we increase the number
of time-dependent features to enhance the degree of uncertainty
that need to be considered in decision-making processes. Detailed
explanations of all features are publicly available on our companion
page.1

4 STUDY DESIGN
4.1 Experimental Conditions
Our study was approved by our institutional ethics board. We de-
signed a between-subject study with a 3×2 factorial design. The
three levels for task complexity were categorized as low, medium,
and high, while the two distinct levels for uncertaintywere diagnostic
and prognostic tasks. We refer to these conditions as LowDiag,
LowProg, MedDiag, MedProg, HighDiag, and HighProg. Partici-
pants were randomly assigned to one of the six experimental condi-
tions while ensuring a balanced distribution of participants across
the different task complexity and uncertainty levels. In each condi-
tion, participants were presented with three different task instances
to complete with the assistance of an AI system. The three task
instances were determined based on each condition’s assigned com-
plexity and uncertainty levels. Detailed explanations regarding the
complexity and uncertainty levels are provided in section 3.3.

We fine-tuned the AI system to suggest routes that satisfy the
given criteria with an accuracy of 66.7% across all experimental
conditions. This level of accuracy was chosen since it is helpful
if the system is relied on but still involves some risks. Hence, it
calls for appropriate reliance instead of blindly following the AI
system’s advice. This design choice is motivated by prior work
emphasizing the role of uncertainty in dictating the need to facilitate
appropriate reliance [71]. This implies that within each batch of
three task instances that a participant completes, to control for
potential ordering effects, we ensure that incorrect advice is offered
by the AI system once at random.

4.2 Measures
We leveraged a set of objective metrics to quantify participants’ re-
liance on the AI system (cf. Table 2) [58, 88, 90, 113, 139, 141]. These
metrics include Agreement Fraction, Switch Fraction [51, 138, 142],
and Accuracy with Disagreement [51], Relative Positive AI Reliance,
and Relative Positive Self-Reliance [112]. These parameters are com-
monly adapted in literature to capture the level of reliance within
the human-AI interaction context. In addition to these measures
of reliance, we also evaluated participants’ decision-making accu-
racy, demonstrating the human-AI team performance [11, 108]. By
measuring trust and reliance variables alongside human-AI team
performance, we can gain a deeper understanding of whether per-
formance outcomes result from under-reliance, appropriate reliance,
or over-reliance on AI systems.

The subjective trust in the AI system was assessed using the
Trust in Automation questionnaire (TiA) [63], which is a commonly
employed and validated tool for measuring trust [78, 116, 120].
The questionnaire comprises multiple items that evaluate vari-
ous aspects such as participants’ perceptions regarding Reliabil-
ity/Competence (TiA-R/c), Understanding/Predictability (TiA-U/P),
Familiarity (TiA-Familiarity), Intention of Developers (TiA-IoD),
the Propensity to Trust (TiA-PtT), and the overall level of trust
placed in the AI system, Trust in Automation (TiA-Trust).

We collected information about participants’ perceived numer-
acy skills as well as their affinity for technology in the pre-task ques-
tionnaire. To measure numeracy skills, we employed the Subjective
Numeracy Scale [38], which is a self-report measure of perceived
ability to perform various mathematical tasks and preference for
the use of numerical information. Additionally, we administered the
Affinity for Technology Interaction Scale (ATI) [41] to determine
participants’ level of comfort and familiarity with technology [120].

4.3 Participants
We first estimated the required sample size using G*Power software,
considering a medium effect size of 0.25, a power of 0.90, and a sig-
nificance level of 0.05, leading to a recommended minimum sample
size of 210 participants, i.e., 35 participants in each of our experi-
mental condition. To obtain a sufficient sample for our study while
accounting for potential exclusion, we enlisted the participation of
285 individuals using the Prolific crowdsourcing platform. To ensure
the reliability of the data gathered, we applied inclusion criteria that
were designed to select native English speakers with a minimum
approval rate of 95% on the platform and at least 100 completed
studies. A total of 27 participants who failed any attention-check
questions or the quiz were excluded from participation in the study,
resulting in a final sample size of 258 participants. On average,
participants took approximately 25 minutes to complete the entire
study. All participants were compensated at the fixed rate of 8 GBP
per hour regardless of their performance in the study. Additionally,
participants received bonus rewards amounting to 0.2 GBP for each
accurate response they provided during the study period. Overall,
participants earned an average of 8.44 GBP per hour, well over
the wage considered to be ‘good’ and recommended by the Prolific
platform.

4.4 Procedure
The entire workflow of the study is illustrated in Figure 2.When par-
ticipants entered the study, they were first provided with informed
consent, a brief overview of the study’s goals, and instructions on
how to complete the tasks (step 1). If they consented to partici-
pate, they were directed to the pre-task questionnaire in step 2,
where they were presented with a series of questions related to
their numeracy skills and affinity for technology. Participants were
then randomly assigned to one of the six different experimental
conditions. According to the assigned condition, participants were
presented with an interface tutorial and task tutorial that provided
step-by-step instructions on how to navigate and complete the task
followed by a training session on a sample task. The participants
were given sufficient time to familiarize themselves with the sample
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Table 2: An overview of the different metrics that we considered in our user study.

Metric Type Metric Name Value Type Value Range

Performance Accuracy Continuous [0,1]

Reliance Switch Fraction Continuous [0,1]
Agreement Fraction Continuous [0,1]

Appropriate Reliance [51, 112]
Accuracy-wid Continuous [0,1]

RAIR Continuous [0,1]
RSR Continuous [0,1]

Trust

TiA-ReliabilityCompetence Likert 5-point, strong distrust to strong trust
TiA-UnderstandingPredictability Likert 5-point, strong distrust to strong trust
TiA-Intention of Developers Likert 5-point, strong distrust to strong trust
TiA-Trust in Automation Likert 5-point, strong distrust to strong trust

Covariates

Subjective Numeracy (SNS) Likert 6-point: from low to high
Affinity for Technology (ATI) Likert 6-point: low to high

TiA-Familiarity Likert 5-point, strong distrust to strong trust
TiA-Propensity to Trust (TiA-PtT) Likert 5-point, strong distrust to strong trust

task and the interface. To ensure the understanding of the task, par-
ticipants were required to answer a quiz related to the task features
before proceeding to the main task. If participants did not pass the
quiz, they were excluded from the study. Otherwise, they received
immediate feedback on their quiz performance to ensure that partic-
ipants proceeded to the main task with a complete understanding of
the task and devoid of familiarity or comprehension-related biases.
Participants were then asked to complete three trip-planning tasks.
Each task instance consisted of a decision-making scenario, where
participants had to analyze the information provided and make
an AI-assisted decision. Lastly, participants were directed to fill
out a post-task questionnaire to assess their perception of the task
features and trust in the AI system.

Figure 2: Illustration of the procedure participants followed
within our study.

5 RESULTS
5.1 Descriptive Statistics
5.1.1 Demographics. The resulting sample of 258 participants had
an average age of 38 years old (𝑆𝐷 = 11.8) and consisted of 39%
females and 61% males. To account for potential confounding vari-
ables, we gathered information about the participants’ subjective
numeracy skill (SNS), affinity for technology (ATI), TiA-Familiarity,
and TiA-Propensity to Trust (TiA-PtT). Participants reported a mod-
erate level of perceived numeracy (𝑀 = 4.28, 𝑆𝐷 = 0.80) on the
6-point scale. Similarly, participants were found to have a moderate
affinity for technology interaction (𝑀 = 4.04, 𝑆𝐷 = 0.56) measured
on a 6-point scale, low familiarity (𝑀 = 2.87, 𝑆𝐷 = 1.17), and a
moderate propensity to trust AI (𝑀 = 3.72, 𝑆𝐷 = 0.49) measured
on a 5-point scale.

5.2 Hypothesis Tests
H1a. Impact of task complexity on appropriate reliance: To
explore the main effect of complexity on appropriate reliance, we
conducted a Kruskal–Wallis test, Table 3. Subsequently, we con-
ducted Dunn’s post-hoc test to determine which levels of complex-
ity resulted in significant differences in appropriate reliance. We
reported adjusted p-values, calculated using Bonferroni correction
to account for the increased likelihood of falsely declaring statistical
significance when conducting multiple tests. If the adjusted p-value
for an individual hypothesis is less than the significance level (0.05),
then the null hypothesis is rejected, indicating a statistically signif-
icant result [135]. We first report the influence of complexity on
reliance, followed by our examination of appropriate reliance.

The observed significant difference in switch fraction between
high and low-complexity tasks implies that task complexity does
indeed exert an influence on reliance. In tasks with higher com-
plexity levels, individuals tend to shift from relying on their own
judgment to relying on the AI system. This can be attributed to a de-
crease in self-confidence regarding their decision-making abilities
and, as a result, seeking guidance from the AI system.

Tasks of higher complexity tend to diminish the appropriate
reliance on the AI system. Participants demonstrated significantly
lower levels of Accuracy-wid in tasks with greater complexity com-
pared to those with lower complexity. A similar trend is observed
when examining RSR, wherein participants displayed significantly
reduced levels of confidence in themselves during tasks with higher
complexity than those with lower complexity. Consistent with these
findings, participants exhibited a contrasting trend in displaying
a significantly higher level of reliance on the AI system for tasks
that were more complex compared to those of lower complexity,
as indicated by higher RAIR. The rise in RAIR does not necessarily
imply a higher appropriate reliance on the AI system. Rather, it
suggests that individuals under-rely on the AI system in tasks with
relatively lower complexity, and over-rely on the AI system in tasks
with relatively higher complexity without being able to recognize
when the advice may be inaccurate. This excessive reliance can
ultimately have a negative impact on performance by reducing
appropriate reliance levels.
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Table 3: Kruskall-Wallis test for the main effect of task complexity on reliance. † indicates that the effect of the variable is
significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Low) 𝑀 ± 𝑆𝐷 (Medium) 𝑀 ± 𝑆𝐷 (High) Post-hoc Results

Agreement Fraction .8 0.62 ± 0.20 0.54 ± 0.25 0.55 ± 0.28 -
Switch Fraction .003† 0.18 ± 0.32 0.26 ± 0.30 0.34 ± 0.36 Low <Medium <High
Accuracy <.001† 0.79 ± 0.22 0.58 ± 0.27 0.61 ± 0.29 Low > Medium, High
Accuracy-wid .001† 0.61 ± 0.40 0.40 ± 0.37 0.50 ± 0.35 Low > Medium, High
RAIR .001† 0.22 ± 0.41 0.33 ± 0.41 0.43 ± 0.45 Low < Medium, High
RSR <.001† 0.64 ± 0.48 0.34 ± 0.48 0.38 ± 0.49 Low > Medium, High

Furthermore, we found that the accuracy of participants is sig-
nificantly lower in tasks with higher levels of complexity than those
with lower complexity. This finding provides additional evidence
to our previous findings regarding the influence of task complexity
on appropriate reliance. Overall, these results partially support
our hypothesis H1a.

H1b. Impact of task complexity on trust: We aimed to ex-
amine the main effect of task complexity on trust in the AI system.
Therefore, we conducted a two-way ANCOVA to consider the po-
tential confounding effects of the covariates, namely subjective
numeracy skill, affinity for technology, TiA-Familiarity, and TiA-
Propensity to Trust. We did not find a significant effect of task
complexity on human trust in the AI system, leading us to reject
our hypothesis H1b. However, this finding supports that the sub-
jective nature of trust in the AI system does not always follow the
objective measure of reliance on the AI system [90, 114].

H2a. Impact of task uncertainty on appropriate reliance:
We investigated the main effect of task uncertainty on reliance by
conducting the Kruskal–Wallis test, reported in Table 4. We found
that task uncertainty significantly affects participants’ reliance on
the AI system. Participants showed significantly higher levels of
switch fraction when faced with prognostic tasks, indicating their
tendency to rely more on the AI system due to lower self-confidence.
Our findings further suggest that individuals can accurately assess
the level of uncertainty in a task and adjust their reliance on the AI
system accordingly.

Furthermore, our findings revealed that the degree of uncer-
tainty in a task significantly influenced participants’ appropriate
reliance on the AI system. We found that participants were more
likely to appropriately rely on the AI system in diagnostic tasks,
leading to higher accuracy rates, as indicated by higher Accuracy-
wid compared to prognostic tasks. In line with this finding, we
also observed that participants exhibited a slightly higher level of
reliance on their own decision-making skills (RSR) when faced with
diagnostic tasks. On the other hand, in prognostic tasks, partic-
ipants showed significantly higher degree of reliance on the AI
system as indicated by higher RAIR. This finding suggests that
participants tend to rely heavily on the AI system in uncertain
situations. However, this does not necessarily lead to appropriate
reliance. It can be challenging for them to distinguish between
accurate and inaccurate AI advice in prognostic tasks, resulting in
lower appropriate reliance on the AI system and decreased accuracy
levels. As a result, our findings partially support the hypothesis
H2a.

H2b. Impact of task uncertainty on trust: The main effect
of task uncertainty on trust in the AI system was also examined
in this study through the ANCOVA test. The results indicated that
there was no significant main effect of task uncertainty on any
trust subscales. These findings indicate that participants’ trust in
the AI system remains relatively stable regardless of the level of
uncertainty in the task. Thus, we reject our hypothesis H2b.

H3. Interaction effect of task complexity and uncertainty:
We conducted an ANOVA to investigate the interaction effect of
task complexity and uncertainty on appropriate reliance and trust.
We found a significant interaction effect between task complexity
and uncertainty on Accuracy-wid as a measure of appropriate re-
liance. Figure 3a illustrates the interaction effect of task complexity
and uncertainty on Accuracy-wid, focusing on different levels of
complexity. We observed that the trend of Accuracy-wid is descend-
ing for tasks with low and medium complexity while increasing the
level of uncertainty. However, for tasks with high complexity, the
trend is the opposite, where Accuracy-wid increases with increas-
ing uncertainty. Although we found earlier that participants have
a lower Accuracy-wid for prognostic tasks, the interaction effect
suggests that the impact of uncertainty on appropriate reliance
depends on the level of task complexity. This finding suggests that
participants tend to engage more cognitively in tasks they perceive
as less complex, believing they can make accurate judgments. This
trend is also observed in diagnostic tasks with high complexity.
However, when faced with highly complex and prognostic tasks,
participants are more likely to relinquish some cognitive control
and rely heavily on the AI system. This could be attributed to their
perception of the task’s complexity exceeding their own capabilities.
Participants may also view the AI advice as being more reliable
and trustworthy, resulting in increased agreement and appropri-
ate reliance. This finding is further supported by the significant
interaction effect identified in Accuracy, Figure 4a, demonstrating
that participants’ ability to make accurate predictions increases
when they are faced with prognostic tasks with high complexity,
compared to prognostic tasks with medium and low complexity.
Consequently, their level of accuracy aligns with that of the AI
system due to their increased appropriate reliance. Figures 5a and
5b illustrate the Accuracy and Accuracy-wid for different levels of
task complexity and uncertainty.

We can observe the interaction effect of complexity and uncer-
tainty for diagnostic and prognostic tasks in Figure 3b. For diagnos-
tic tasks, the trend Accuracy-wid is descending as the complexity of
the task increases. However, for prognostic tasks, different effects
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Table 4: Kruskall-Wallis test for the main effect of task uncertainty on reliance. † indicates the effect of the variable is significant
in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p 𝑀 ± 𝑆𝐷 (Diagnostic) 𝑀 ± 𝑆𝐷 (Prognostic) Post-hoc Results

Agreement Fraction .01† 0.60 ± 0.23 0.54 ± 0.26 Diagnostic > Prognostic
Switch Fraction .02† 0.22 ± 0.32 0.31 ± 0.34 Diagnostic < Prognostic
Accuracy <.001† 0.72 ± 0.30 0.60 ± 0.24 Diagnostic > Prognostic
Accuracy-wid .04† 0.56 ± 0.43 0.45 ± 0.33 Diagnostic > Prognostic
RAIR .02† 0.27 ± 0.42 0.38 ± 0.44 Diagnostic < Prognostic
RSR .1 0.50 ± 0.50 0.40 ± 0.49 -

(a) Different task complexity levels across uncertainty levels (b) Different task uncertainty level across complexity levels

Figure 3: Interaction effects between task complexity and uncertainty on the Accuracy-wid metric reflecting appropriate
reliance.

(a) Different task complexity levels across uncertainty levels (b) Different task uncertainty levels across complexity levels

Figure 4: Interaction effect between complexity and uncertainty on Accuracy metric.

are observed. Participants tend to have lowerAccuracy-wid as we in-
crease the complexity from low to medium. In medium-complexity
tasks, Accuracy-wid reaches its local minimum. So, as we further
increase the complexity to high levels, Accuracy-wid starts to rise
again, suggesting that participants rely more appropriately on the
AI system, and their accuracy improves in highly complex prognos-
tic tasks, aligning more closely with accuracy of the AI system (cf.
Figure 4b). Furthermore, we can see that the appropriate reliance is
always greater for diagnostic tasks compared to prognostic tasks,
except for high complexity, where the values for prognostic tasks
surpass those for diagnostic tasks, further supporting our findings.
In summary, we found that the interaction effect between com-
plexity and uncertainty in conditions with high complexity and
uncertainty plays a significant role in human-AI decision-making.

While the appropriate reliance drops as the complexity and uncer-
tainty of a task increase, there is a turning point where participants
start to rely more appropriately on the AI system, resulting in in-
creased accuracy in prognostic tasks with high complexity. Thus,
our findings reject hypothesis H3.

6 DISCUSSION
6.1 Key Findings
Our study examined the impact of task complexity and uncertainty
on human-AI decision-making. The results of our study demon-
strated that increasing the level of complexity and uncertainty
in decision-making tasks led to significant differences in users’
reliance on the AI system. In more complex and uncertain tasks,
we found that users were often in initial disagreement with the
advice provided by the AI system. However, they demonstrated a
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(a) Mean of Accuracy-wid (b) Mean of Accuracy

Figure 5: Mean of Accuracy-wid and Accuracy across different levels of task complexity and uncertainty.

heavy reliance on AI advice during the second stage of the decision-
making process, leading to higher Switch Fraction. This can be at-
tributed to the potential recognition that AI offers valuable insights
for decision-making under complexity and uncertainty, coupled
with a lack of confidence in their own judgment, corroborating
what has been uncovered by other work in human-AI decision-
making [23, 105]. Furthermore, the greater cognitive effort linked
to complex tasks may also be a contributing factor. The cost of rely-
ing on the AI system would prove to be less compared to evaluating
the reliability of the AI advice, thereby prompting individuals to
lean towards following AI advice [126]. Additionally, users showed
higher engagement and information-gathering behavior in prog-
nostic scenarios, demonstrated by significantly more clicks on route
control buttons, indicating greater inclination to explore different
route options.

We also found that the appropriate reliance on the AI sys-
tem varied significantly depending on task complexity and un-
certainty. Users exhibited lower appropriate reliance on the AI
system ( lower Accuracy-wid), leading to lower accuracy in tasks
with medium complexity or uncertainty compared to those with low.
However, users demonstrated higher appropriate reliance on the
AI system, resulting in improved accuracy in the experimental con-
ditions with tasks with high complexity or uncertainty compared
to those with medium complexity or uncertainty. Users perceived
that tasks with higher complexity and uncertainty required greater
effort and information processing, making them more willing to
rely on the AI system. In such scenarios, their performance ap-
proaches AI accuracy, indicating the effectiveness of integrating AI
in decision-making.

Our findings showed that individuals generally place signifi-
cantly more reliance on the AI system when faced with tasks
characterized by high uncertainty. However, in such prognostic
tasks, their ability to appropriately rely on AI advice is lower
compared to diagnostic tasks, subsequently affecting their overall
performance. Tasks that involve inherent uncertainty are often
those where humans tend to rely on AI systems for advice, such as
loan approval [27, 34, 124], recidivism prediction [31, 47, 86], house
price estimation [2, 13, 25], and student admission [13, 24]. Individ-
uals may be more inclined to adhere to AI advice in these types
of tasks. This could stem from the belief that AI systems possess

advanced analytical abilities and have access to a greater amount of
data [75]. On the other hand, when individuals are faced with tasks
that have lower uncertainty, such as annotation and classification
task [4, 77, 117], they tend to rely less on the AI advice and rely
more on their expertise and judgment. Since the heavy reliance
on AI systems in uncertain situations does not always lead to im-
proved decision-making accuracy, several mechanisms have been
proposed to optimize the combination of human and AI decisions
to achieve the best outcomes and facilitate appropriate reliance on
the AI system. These mechanisms include providing interpretable
explanations for AI advice [21, 72, 123], using cognitive forcing
functions[17, 47, 99], and incorporating feedback loops to enhance
the interaction between humans and AI systems [10, 11, 139]. De-
spite implementing a two-stage decision-making process to en-
courage individuals to be cognitively involved in the procedure, as
well as incorporating visual and textual explanations for increased
transparency, our research emphasizes the necessity for additional
exploration into strategies that can facilitate appropriate reliance on
AI systems in contexts characterized by high levels of uncertainty.

The complexity of tasks plays a significant role in determining
the degree of reliance on AI advice, consistent with the findings of
[9, 105]. The more complex a task is, the more individuals may be
inclined to rely on the AI system. We use the number of features or
constraints as the measure of task complexity similar to previous
studies [9, 105, 120]. Tasks with a larger number of constraints
that need to be accounted for in decision-making are often more
challenging for individuals to process, making them more likely
to seek guidance from AI [63, 90, 111]. Our findings, which were
based on objective measures, align with [126] study and suggest
that users tend to rely more heavily on AI systems when faced
with complex tasks that demand higher cognitive effort. This is
further backed by [100] indicating that the complexity of a task
can elevate its perceived difficulty, potentially resulting in greater
reliance on AI systems. As shown by Salimzadeh et al. [109], the
majority of tasks that have been studied in the context of decision-
making are characterized by low and medium complexity. Prior
studies that investigated tasks exceeding individual information
processing capabilities (i.e., 9 constraints [91]) suggested employing
visualization techniques to assist individuals in understanding the
AI advice and the underlying decision-making process [43, 137, 140].
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We used visual and textual techniques to support individuals in
understanding the factors playing a role in shaping the given AI
advice. However, in higher complexity scenarios, an individual still
lacks cognitive engagement with the AI system and may be more
likely to rely heavily on its advice. This is supported by the tendency
of individuals to rapidly make their decision within approximately
twenty seconds after receiving advice from AI, without carefully
reassessing the provided information or exploring alternative route
options. Although these visual and textual strategies have shown
promise in improving decision-making outcomes in literature, they
were not sufficient to mitigate over-reliance on AI advice in high
complexity tasks.

According to the Trustworthiness AssessmentModel (TrAM) [111],
accurate perceived trustworthiness of AI systems is essential for
establishing meaningful trust and reliance on AI systems. Factors
such as relevance and availability of system information, as well
as the ability of individuals to detect and utilize this information,
play a crucial role in determining accurate perceived trustworthi-
ness. In our study, we only presented relevant task features using
visual and textual formats to participants. We utilized user behavior
metrics and validation of participant perceptions through training
and quizzes to ensure the detection of these features. However,
we expected the complexity and uncertainty of tasks to impact the
availability and utilization of system information, thus affecting per-
ceived trustworthiness [98]. However, participant trust remained
consistent regardless of task complexity or uncertainty, which was
in contrast to what is suggested by the TrAM framework.

6.2 Implications of Our Work
6.2.1 Implications for Methodology and the HCI Community. The
implications of methodology in HCI research pertain to the design
and analysis of studies [125]. These implications specifically address
data collection methods and the construction of new knowledge.
Our work has important implications for the methods used to study
human-AI decision-making, for increasing the external validity of
empirical work and strengthening the understanding of the trans-
ferability of findings across different studies. It has been observed
that task characteristics, such as complexity and uncertainty, are
seldom examined or analyzed systematically in human-AI decision-
making studies. While it may not be experimentally feasible to
account for every facet of a task, our research emphasizes the sig-
nificance of considering these factors when assessing human-AI
collaboration. Future research should consider the incorporation of
methodologies that take into account task-related features when
evaluating human-AI decision-making. Our findings also contribute
to the interpretation of human behaviour and reliance on AI sys-
tems through the lens of task complexity and uncertainty. Current
studies often focus on generic decision-making scenarios or tasks
with low to medium complexity, which may not fully reflect or
represent the challenges and dynamics of the full range of real-
world scenarios. This is particularly important in highly complex
tasks coupled with high uncertainty, where humans tend to re-
quire, appreciate, and rely on advice from an AI system. Future
research should consider the systematic identification and inclusion
of task-specific characteristics in the design of studies in the realm
of human-AI decision-making.

To initiate a systematic evaluation of task characteristics, we
propose the lens of diagnostic and prognostic tasks as a framework
for modeling uncertainty in decision-making, which can be used as
a basis for designing experiments and gathering data on human-AI
interactions. This approach acknowledges the inherent uncertainty
in determining or estimating different constraints that influence
decision outcomes. Additionally, it offers a relatively more precise
representation of decision-makers’ challenges. Incorporating this
lens into research methodology would involve designing studies
that specifically control the uncertainty inherent in diagnostic and
prognostic tasks and exploring their impact on human-AI decision-
making processes and outcomes. We also encourage researchers to
consider highly complex tasks in their experiments to capture the
challenges and nuances of decision-making in real-world scenarios.
This can be achieved by developing scenarios or simulations that
closely resemble complex decision-making situations in different
domains. Our task details and all code for the interface are made
publicly available to support future research in the community.2

Our study also highlights the need for further examination and
development of techniques tailored specifically to support high-
complexity and prognostic tasks in human-AI decision-making.
Although many interventions have been developed for decision-
making in various domains, there is still a need to focus on the
unique challenges posed by high complexity and prognostic tasks.
Such interventions could be targeted to offer users indicators that
can help them accurately assess the reliability, plausibility, and
verifiability of the AI advice. Consequently, these methods will
promote appropriate reliance on the AI system in complex and
uncertain decision-making scenarios. There is a heightened ur-
gency in developing and creating these mechanisms to prevent
potential deception arising from the complexity and uncertainty of
tasks, which can make it challenging to detect untrustworthy AI
systems [8]. By reducing the cost of verifiability and plausibility
of such XAI techniques, decision-makers can gain a better under-
standing of the basis for AI advice based on their own expertise
and judgment, potentially leading to improved performance and
appropriate utilization of AI systems.

The decline in performance of human-AI teams when tackling
tasks of medium complexity suggests that users may have faced
challenges in accurately assessing their own abilities and the ca-
pabilities of AI systems, primarily by overestimating their own
abilities [64]. This aligns with previous research findings, high-
lighting the need for interventions to assist users in evaluating
their skills and appropriately adjusting their reliance on AI sys-
tems [25, 51, 69]. This may be particularly important in tasks with
relatively moderate complexity which may lead to illusory self-
assessments among some users, compared to tasks with evidently
low or discernibly high complexity.

6.2.2 Implications for Theory. Theoretical implications focus on
the understanding of task characteristics and their impact on human-
AI decision-making. Based on our findings, it is evident that the
complexity and uncertainty of tasks significantly influence how
humans rely on AI systems. This study serves as the application-
grounded evaluation [32] in the context of trip-planning, centering
on the individuals the system intends to support in actual tasks. It
2https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c

https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c
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empirically validates the commonly held belief that task complexity
and uncertainty play a crucial role in determining human reliance
on AI systems. While the primary objective of combining humans
and AI is to achieve enhanced performance through collaboration,
an over-reliance on AI can potentially impede the advantages of-
fered by human judgment and decision-making abilities. Therefore,
it is crucial for researchers to develop theoretical frameworks that
can help identify and motivate the optimal balance between human
and AI involvement in decision-making, taking into consideration
task complexity and uncertainty.

Contrary to previous research suggesting that trust in AI sys-
tems increases with the complexity and uncertainty of tasks, our
findings indicate that trust is orthogonal to these factors. These
results suggest that trust is not the sole determinant of reliance
on AI advice, and other factors such as task characteristics play a
significant role. This also indicates the difference between human
trustworthy beliefs and behavior toward AI systems, where trust
may not always translate into increased reliance, highlighting the
need to measure, calibrate, and understand factors beyond trust
that influence human-AI decision-making.

6.3 Caveats and Limitations
According to the checklist of cognitive biases provided by Draws
et al. [33], it is important to acknowledge that humans are prone
to cognitive biases. In our task, we identify the familiarity bias and
availability heuristic, which can cause individuals to exhibit an incli-
nation towards decisions that align with their pre-existing beliefs or
past experiences. Although we created artificial routes, individuals
may still tend to prefer familiar or known options or prefer spe-
cific transport modes due to personal biases. Confirmation bias and
overconfidence bias are other potential limitations, as individuals
may be more likely to seek out and give more weight to information
that confirms their preconceived notions or beliefs regarding AI
capabilities and their decision-making abilities. We should also con-
sider the self-interest bias, where individuals may prioritize their
own monetary reward over objective decision-making criteria.

The findings discussed in this paper are not universally applica-
ble to all decision-making tasks. Different tasks may have varying
characteristics and contexts that can influence human-AI decision-
making. Although this is a valid approach to operationalize uncer-
tainty, it is important to acknowledge that there could be other
approaches to capturing task uncertainty that were not explored
in this study (e.g., missing data or conflicting information). Future
research should consider exploring different operationalizations of
task complexity and uncertainty to further understand their impact
on human reliance on AI systems. It is worth noting that we asked
participants in our study to consider that the traffic features were
unrelated to each other and carried equal weights in determining
the best route. This may not always be the case in real-world con-
texts. We also considered traffic conditions in both diagnostic and
prognostic scenarios, although, in the real world, traffic conditions
can change over time and at the time of decision-making, making
them predominantly prognostic.

7 CONCLUSION AND FUTUREWORK
In this study, we explored how task complexity (RQ1) and task
uncertainty (RQ2) and their interaction (RQ3) inform user trust
and appropriate reliance on AI systems. To this end, we conducted a
user study with 258 participants across six experimental conditions
varying in three levels of task complexity (low, medium, and high)
and two levels of task uncertainty (diagnostic and prognostic).
We selected trip-planning as the decision-making task and evalu-
ated participants’ trust, reliance, and decision-making behaviors
when interacting with an AI system. The study showed that task
complexity and uncertainty significantly impact human reliance
on AI systems. Participants tended to rely more on AI in tasks with
higher complexity and uncertainty, with no significant differences
in human trust across different levels of complexity and uncertainty.

Future studies should further explore the relationship between
task complexity and uncertainty to better understand their intercon-
nections in human-AI decision-making. Further research is needed
across a range of domains and task types to fully understand the im-
pact of task complexity and uncertainty. We encourage researchers
to investigate the impact of other task characteristics, such as time
pressure and information overload, on human-AI decision-making.
Future work should also focus on understanding how to effectively
present AI-generated predictions and explanations to enhance hu-
man understanding and decision-making, particularly in complex
and uncertain situations. Given the increasing complexity and un-
certainty of tasks, it becomes crucial to develop strategies that can
help users evaluate the reliability and verifiability of AI advice in
these scenarios.
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